版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市培佳雙語學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,若,則等于()A. B.1 C.2 D.2.某單位共有老、中、青職工430人,其中有青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()A.9 B.18 C.27 D.363.《九章算術(shù)》中,將四個(gè)面均為直角三角形的三棱錐稱為鱉臑,若三棱錐為鱉臑,其中平面,,三棱錐的四個(gè)頂點(diǎn)都在球的球面上,則該球的體積是()A. B. C. D.4.已知角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,將終邊按逆時(shí)針方向旋轉(zhuǎn)后,終邊經(jīng)過點(diǎn),則()A. B. C. D.5.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.6.等差數(shù)列的前項(xiàng)和為,若,且,則()A.10 B.7 C.12 D.37.等差數(shù)列中,,則().A.110 B.120 C.130 D.1408.已知數(shù)列的通項(xiàng)公式是,則等于()A.70 B.28 C.20 D.89.已知向量,向量,且,那么等于()A. B. C. D.10.已知函數(shù),其圖象與直線相鄰兩個(gè)交點(diǎn)的距離為,若對(duì)于任意的恒成立,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在數(shù)列中,,,若,則的前項(xiàng)和取得最大值時(shí)的值為__________.12.關(guān)于的方程()的兩虛根為、,且,則實(shí)數(shù)的值是________.13.已知三棱錐的外接球的球心恰好是線段的中點(diǎn),且,則三棱錐的體積為__________.14.在中,內(nèi)角,,的對(duì)邊分別為,,.若,,成等比數(shù)列,且,則________.15.已知二面角為60°,動(dòng)點(diǎn)P、Q分別在面、內(nèi),P到的距離為,Q到的距離為,則P、Q兩點(diǎn)之間距離的最小值為.16.設(shè)數(shù)列的通項(xiàng)公式為,則_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,a,b,c分別為角A,B,C的對(duì)邊,且,,,求角A的大?。?8.已知數(shù)列滿足:,(1)求,的值;(2)求數(shù)列的通項(xiàng)公式;(3)設(shè),數(shù)列的前n項(xiàng)和,求證:19.記為等差數(shù)列的前項(xiàng)和,已知,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)求,并求的最小值.20.如圖,在△ABC中,cosC=,角B的平分線BD交AC于點(diǎn)D,設(shè)∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的長(zhǎng).21.如圖,在四棱錐中,底面為平行四邊形,點(diǎn)為中點(diǎn),且.(1)證明:平面;(2)證明:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
首先根據(jù)?(cos﹣3)cos+sin(sin﹣3)=﹣1,并化簡(jiǎn)得出,再化為Asin()形式即可得結(jié)果.【題目詳解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化簡(jiǎn)得,即sin()=,則sin()=故選A.【題目點(diǎn)撥】本題考查了三角函數(shù)的化簡(jiǎn)求值以及向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.2、B【解題分析】試題分析:根據(jù)條件中職工總數(shù)和青年職工人數(shù),以及中年和老年職工的關(guān)系列出方程,解出老年職工的人數(shù),根據(jù)青年職工在樣本中的個(gè)數(shù),算出每個(gè)個(gè)體被抽到的概率,用概率乘以老年職工的個(gè)數(shù),得到結(jié)果.設(shè)老年職工有x人,中年職工人數(shù)是老年職工人數(shù)的2倍,則中年職工有2x,∵x+2x+160=430,∴x=90,即由比例可得該單位老年職工共有90人,∵在抽取的樣本中有青年職工32人,∴每個(gè)個(gè)體被抽到的概率是用分層抽樣的比例應(yīng)抽取×90=18人.故選B.考點(diǎn):分層抽樣點(diǎn)評(píng):本題是一個(gè)分層抽樣問題,容易出錯(cuò)的是不理解分層抽樣的含義或與其它混淆.抽樣方法是數(shù)學(xué)中的一個(gè)小知識(shí)點(diǎn),但一般不難,故也是一個(gè)重要的得分點(diǎn),不容錯(cuò)過3、A【解題分析】
根據(jù)三棱錐的結(jié)構(gòu)特征和線面位置關(guān)系,得到中點(diǎn)為三棱錐的外接球的球心,求得球的半徑,利用球的體積公式,即可求解.【題目詳解】由題意,如圖所示,因?yàn)?,且為直角三角形,所以,又因?yàn)槠矫?,所以,則平面,得.又由,所以中點(diǎn)為三棱錐的外接球的球心,則外接球的半徑.所以該球的體積是.故選A.【題目點(diǎn)撥】本題考查了有關(guān)球的組合體問題,以及三棱錐的體積的求法,解答時(shí)要認(rèn)真審題,注意球的性質(zhì)的合理運(yùn)用,求解球的組合體問題常用方法有(1)三條棱兩兩互相垂直時(shí),可恢復(fù)為長(zhǎng)方體,利用長(zhǎng)方體的體對(duì)角線為外接球的直徑,求出球的半徑;(2)利用球的截面的性質(zhì),根據(jù)勾股定理列出方程求解球的半徑.4、B【解題分析】
先建立角和旋轉(zhuǎn)之后得所到的角之間的聯(lián)系,再根據(jù)誘導(dǎo)公式和二倍角公式進(jìn)行計(jì)算可得.【題目詳解】設(shè)旋轉(zhuǎn)之后的角為,由題得,,,又因?yàn)椋缘?,故選B.【題目點(diǎn)撥】本題考查任意角的三角函數(shù)和三角函數(shù)的性質(zhì),是基礎(chǔ)題.5、C【解題分析】
將1,2代入直線方程得到1a+2【題目詳解】將1,2代入直線方程得到1a+b=(a+b)(當(dāng)a=2故答案選C【題目點(diǎn)撥】本題考查了直線方程,均值不等式,1的代換是解題的關(guān)鍵.6、C【解題分析】
由等差數(shù)列的前項(xiàng)和公式解得,由,得,由此能求出的值?!绢}目詳解】解:差數(shù)列的前n項(xiàng)和為,,,解得,解得,故選:C。【題目點(diǎn)撥】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、B【解題分析】
直接運(yùn)用等差數(shù)列的下標(biāo)關(guān)系即可求出的值.【題目詳解】因?yàn)閿?shù)列是等差數(shù)列,所以,因此,故本題選B.【題目點(diǎn)撥】本題考查了等差數(shù)列下標(biāo)性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.8、C【解題分析】
因?yàn)?,所以,所?20.故選C.9、D【解題分析】
由兩向量平行,其向量坐標(biāo)交叉相乘相等,得到.【題目詳解】因?yàn)?,所以,解得?【題目點(diǎn)撥】本題考查向量平行的坐標(biāo)運(yùn)算,考查基本運(yùn)算,注意符號(hào)的正負(fù).10、A【解題分析】由題意可得相鄰最低點(diǎn)距離1個(gè)周期,,,,即,,即所以,包含0,所以k=0,,,,選A.【題目點(diǎn)撥】由于三角函數(shù)是周期周期函數(shù),所以不等式解集一般是一系列區(qū)間并集,對(duì)于恒成立時(shí),需要令k為幾個(gè)特殊值,再與已知集合做運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
解法一:利用數(shù)列的遞推公式,化簡(jiǎn)得,得到數(shù)列為等差數(shù)列,求得數(shù)列的通項(xiàng)公式,得到,,得出所以,,,,進(jìn)而得到結(jié)論;解法二:化簡(jiǎn)得,令,求得,進(jìn)而求得,再由,解得或,即可得到結(jié)論.【題目詳解】解法一:因?yàn)棰偎寓?,①②,得即,所以?shù)列為等差數(shù)列.在①中,取,得即,又,則,所以.因此,所以,,,所以,又,所以時(shí),取得最大值.解法二:由,得,令,則,則,即,代入得,取,得,解得,又,則,故所以,于是.由,得,解得或,又因?yàn)椋?,所以時(shí),取得最大值.【題目點(diǎn)撥】本題主要考查了數(shù)列的綜合應(yīng)用,以及數(shù)列的最值問題的求解,此類題目是數(shù)列問題中的常見題型,對(duì)考生計(jì)算能力要求較高,解答中確定通項(xiàng)公式是基礎(chǔ),合理利用數(shù)列的性質(zhì)是關(guān)鍵,能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計(jì)算能力等,屬于中檔試題.12、5【解題分析】
關(guān)于方程兩數(shù)根為與,由根與系數(shù)的關(guān)系得:,,由及與互為共軛復(fù)數(shù)可得答案.【題目詳解】解:與是方程的兩根由根與系數(shù)的關(guān)系得:,,由與為虛數(shù)根得:,,則,解得,經(jīng)驗(yàn)證,符合要求,故答案為:.【題目點(diǎn)撥】本題考查根與系數(shù)的關(guān)系的應(yīng)用.求解是要注意與為虛數(shù)根情形,否則漏解,屬于基礎(chǔ)題.13、【解題分析】
根據(jù)題意得出平面后,由計(jì)算可得答案.【題目詳解】因?yàn)槿忮F的外接球的球心恰好是的中點(diǎn),所以和都是直角三角形,又因?yàn)椋?,,又,則平面.因?yàn)?,所以三角形為邊長(zhǎng)是的等邊三角形,所以.故答案為:【題目點(diǎn)撥】本題考查了直線與平面垂直的判定,考查了三棱錐與球的組合,考查了三棱錐的體積公式,屬于中檔題.14、【解題分析】
A,B,C是三角形內(nèi)角,那么,代入等式中,進(jìn)行化簡(jiǎn)可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【題目詳解】因?yàn)椋?,所?因?yàn)椋?,成等比?shù)列,所以,所以,則,整理得,解得.【題目點(diǎn)撥】本題考查正弦定理和等比數(shù)列運(yùn)用,有一定的綜合性.15、【解題分析】
如圖
分別作于A,于C,于B,于D,
連CQ,BD則,,
又
當(dāng)且僅當(dāng),即點(diǎn)A與點(diǎn)P重合時(shí)取最小值.
故答案選C.【題目點(diǎn)撥】16、【解題分析】
根據(jù)數(shù)列的通項(xiàng)式求出前項(xiàng)和,再極限的思想即可解決此題?!绢}目詳解】數(shù)列的通項(xiàng)公式為,則,則答案.故為:.【題目點(diǎn)撥】本題主要考查了給出數(shù)列的通項(xiàng)式求前項(xiàng)和以及極限。求數(shù)列的前常用的方法有錯(cuò)位相減、分組求和、列項(xiàng)相消等。本題主要利用了分組求和的方法。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、【解題分析】
由正弦定理得,即得,再利用余弦定理求解.【題目詳解】因?yàn)樵谌切蜛BC中,由正弦定理得.又因?yàn)?,所以得,由余弦定理得.又三角形?nèi)角在.故角A為.【題目點(diǎn)撥】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1);;(2)(3)見證明;【解題分析】
(1)令可求得;(2)在已知等式基礎(chǔ)上,用代得另一等式,然后相減,可求得,并檢驗(yàn)一下是否適合此表達(dá)式;(3)用裂項(xiàng)相消法求和.【題目詳解】解:(1)由已知得,∴(2)由,①得時(shí),,②①-②得∴,也適合此式,∴().(3)由(2)得,∴∴∵,∴∴【題目點(diǎn)撥】本題考查由數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.求通項(xiàng)公式時(shí)的方法與已知求的方法一樣,本題就相當(dāng)于已知數(shù)列的前項(xiàng)和,要求.注意首項(xiàng)求法的區(qū)別.19、(1),(2),最小值為?1.【解題分析】
(Ⅰ)根據(jù)等差數(shù)列的求和公式,求得公差d,即可表示出的通項(xiàng)公式;(Ⅱ)根據(jù)等差數(shù)列的求和公式得Sn=n2-8n,根據(jù)二次函數(shù)的性質(zhì),可得Sn的最小值.【題目詳解】(I)設(shè)的公差為d,由題意得.由得d=2.所以的通項(xiàng)公式為.(II)由(I)得.所以當(dāng)n=4時(shí),取得最小值,最小值為?1.【題目點(diǎn)撥】本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)的和公式,考查了等差數(shù)列前n項(xiàng)和的最值問題;求等差數(shù)列前n項(xiàng)和的最值有兩種方法:①函數(shù)法,②鄰項(xiàng)變號(hào)法.20、(1)(2)【解題分析】
(1)根據(jù)二倍角公式及同角基本關(guān)系式,求出cos∠ABC,進(jìn)而可求出sinA;(2)根據(jù)正弦定理求出AC,BC的關(guān)系,利用向量的數(shù)量積公式求出AC,可得BC,正弦定理可得答案.【題目詳解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,則sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,即BCAC;又?AC2?21,∴AC=5,∴ABAC=4.【題目點(diǎn)撥】本題考查了二倍角公式、同角基本關(guān)系式和正弦定理的靈活運(yùn)用和計(jì)算能力,是中檔題.21、(1)證明見解析;(2)證明見解析【解題分析】
(1)連接交于點(diǎn),連接,可證,從而可證平面.(2)可證平面,從而得到平面平面.【題目詳解】(1)連接交于點(diǎn),連接,因?yàn)榈酌鏋槠叫兴倪呅?,所以為中點(diǎn).在中,又為中點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學(xué)學(xué)生社團(tuán)活動(dòng)經(jīng)費(fèi)管理制度
- 信息保密制度
- 企業(yè)獎(jiǎng)懲制度
- 2026年軟件測(cè)試工程師全攻略測(cè)試方法與流程
- 2026年文學(xué)創(chuàng)作與編輯專業(yè)試題集及答案
- 2026年金融投資理論及實(shí)務(wù)試題庫
- 2025年聯(lián)邦學(xué)習(xí)模型橫向分割數(shù)據(jù)安全對(duì)齊協(xié)議
- 2025年電動(dòng)自行車集中充電設(shè)施智能斷電系統(tǒng)技術(shù)標(biāo)準(zhǔn)協(xié)議
- 古詞課件內(nèi)容
- 急診護(hù)理中腦出血的急救處理流程及制度
- 2025中央廣播電視總臺(tái)招聘144人筆試歷年題庫附答案解析
- 急性高原疾病課件
- 牧業(yè)公司生產(chǎn)安全預(yù)案
- 腦機(jī)接口科普
- 2025年湖北煙草專賣局招聘考試真題及答案
- 教育資源分享平臺(tái)管理框架模板
- 反向呼吸訓(xùn)練方法圖解
- 肉雞采食量影響因素分析與調(diào)控研究進(jìn)展
- T-CCTAS 237-2025 城市軌道交通市域快線車輛運(yùn)營(yíng)技術(shù)規(guī)范
- 軟件系統(tǒng)上線測(cè)試與驗(yàn)收?qǐng)?bào)告
- 冬季交通安全測(cè)試題及答案解析
評(píng)論
0/150
提交評(píng)論