多功能題典初中數(shù)學(xué)競(jìng)賽章代數(shù)式_第1頁(yè)
多功能題典初中數(shù)學(xué)競(jìng)賽章代數(shù)式_第2頁(yè)
多功能題典初中數(shù)學(xué)競(jìng)賽章代數(shù)式_第3頁(yè)
多功能題典初中數(shù)學(xué)競(jìng)賽章代數(shù)式_第4頁(yè)
多功能題典初中數(shù)學(xué)競(jìng)賽章代數(shù)式_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

22.1.1★化簡(jiǎn)1x1xx2x322.1.1★化簡(jiǎn)1x1xx2x3xn1,其中n1原式1xx2x3 xn1xx2x3xn1xn1xnaban1an2babn2bn1anbn(1)abcdcadb(2)x2yx2yx416y48x2cbd2c2b2d22bd2bc2cda2(2)x2yx2y的結(jié)果是x48x2y216y4x24y2原式x24y2x24y22x24y2x223x224y23x24y224y2x612x4y248x2y464y62.1.3gxfxx33x21,求gxfx所得的商qx及余rx2x1x 3x22x1x33x2xx32x21 7x24x1 7x214x 26x 因此,所求的商q1x 3x22x1x33x2xx32x21 7x24x1 7x214x 26x 因此,所求的商qx1x7,余式rx26x2 x為3次多項(xiàng)式,首項(xiàng)系數(shù)gx2次,首項(xiàng)系數(shù)為3,故商qx1次,首項(xiàng)系1,112,于是可設(shè)商式q xa,余式rxbxc數(shù)必為,而余式次數(shù)33根據(jù)fxqxgxrxx33x2x 3x2x xabx2 2 1 x3a xb2a xac32 3 3 3a23b2a13ac解得a7b26c2,故商式qx1x7,余式rx26x2999 2.1.4x7時(shí),代數(shù)式ax5bx84x7ax5bx3 x7ax5bx31ax5bx8 2147922.1.5xyzxyz12,試求2x3y4z 解 y2x,z3x,代xyzx2y4z6,所以2xxyzx2y4z6,所以2x3yz4402.1.6★★試確定a和bx4ax2bx2x23x23x2x1x2,因此fxx4ax2bx2f10x1x2x11ab20f20x2164a2b20ab2.1.7★若x1x1x5x3bx2cxd,求bd解析x1x1x5x21x5x35x2x5,所以bd5.bd02.1.8★將3x25x7表示成ax22bx2c3x25x 2 x25x23x2217x2152.1.9★已知a2a10,求a32a22的值.解析1 由a2a1,有a32a22a3a2a2aa2aa2aa22122由a21a.a(chǎn)32a22a2a221aa22aa224a4a1a4a1a2.1.10xymx3y3nm0x2y2的值.解析因?yàn)閤ym,所以m3xy3x3y33xyx2.1.10xymx3y3nm0x2y2的值.解析因?yàn)閤ym,所以m3xy3x3y33xyxyn3mxy所以xy nx2y2xy2mn2m2 . 2.1.11★★若x2xyy14y2xyx28,求xy把兩個(gè)方程相加,得xy2xy42xy6xy70xy6xy72.1.12xy1x2y22x7y72,所以1xy2x2y22xy22xyxy1x22x3y3xy33xyxy1513 1 2 2x4y4x2y222x217222 2 1故x7y7x3y3x4y4x3y3xy 2 82.1.13★★已知a1999x2000,b1999x2001,c1999x2002a2b2c2abbcca解 由a2b2c2abbc多項(xiàng)式1ab2bc2ca22又因?yàn)閍b1bc1ca2,原式1121222322.1.14★★已知實(shí)數(shù)a、b、x、y滿足abx原式1121222322.1.14★★已知實(shí)數(shù)a、b、x、y滿足abxy2,axby5,求a2b2xyabx2y2的abxy2,得abxyaxbyaybx4.因?yàn)閍xby5aybxa2b2xyabx22.1.15★★已知3xax7ax6ax5 axa,試求aaa aa的值765 fx的系數(shù)和,就是f1 多項(xiàng)3127aaaa .x,它x12;被x2除8x12.1.16★★求一個(gè)關(guān)于xffxax2bxc則f1abc2①②③f24a2bc8f1abc04ac6④⑤aca53c235x2x233x2y2m22yxnmy2n20m2x2m2y22mxym2x2m2y22mxy2mnyy2n20即mxy2myn20所以mxy0,mynnn因?yàn)閙0,所以y ,x mxyzxyzxyzx1y21z2y1x21z2z1x21y24xyz解 因?yàn)閤yzxyz,所左邊x1z2y2y2z2y1z2x2x2z2z1y2x2x2y2xyzxz2xy2xy2z2yz2yx2yx2z2zy2zx2zx2xyzxyyxxzxzyzyzxyzxyyzxyzxyxyzzxzxyzyyzxyzxxyzxyyzxyzxyzxyz4xyz★已知a2b2c2abbcca,證明abc.解析因?yàn)閍2b2c2abbcca,所以2a2b2c22abbcca0,即ab2bc2ca20,因此abbcca0,abcyz2x3zx2y3xy2z3yz2xzx2yxy2zyz2xazx2ybxy2zc①②③則要證的等式變?yōu)閍3b3則要證的等式變?yōu)閍3b3c3a3b3c3abca2b2c2abbc,abcyz2xzx2yxy2z0,所以a3b3c33abc0,所以yz2x3zx2y3xy2z3yz2xzx2yxy2z2.1.21★★已知a4b4c4d44abcda、b、c、dabcda4b4c4d44abcd0a2b22c2d222a2b22c2d24abcd0,a2b22c2d222abcd20a2b220c2d220abcd20,所a2b2c2d2abcd0所以ababcdcd0又因?yàn)閍、b、c、d都為正數(shù),所以ab0cd0ab,cdabcda2c2acac0,所以ac.故abcd成立.2.1.22★★已知abc02a4b4c4a2b2c22 用作差法,注意利用abc0的條件.左右2a4b4c4a2b2c2a4b4c42a2b22b2c2a2b2c22a2b2c22bca2b2c2a2bc2a2bc2abcaabcabcabcab0(1)2x5n1yn4x3n1yn22xn1yn4(2)x38y3z36xyz(3)a2b2c22bc2ca2ab(4)a7a5b2a2b5b7解析(1)原式2xn1ynx4n2x2ny2y42xn1ynx2n22x2ny2y222xn1ynx2ny22xn1ynxny2xny2(2)原式x32y3z33x2yzx2yzx24y2z22xyxz2yza22abb22bc2caab22cabc2ab.a(chǎn)2b2c22bc2ca2aab.(4)原式a7a5b2a2b5b7a5a2b2b5a2b2a2b2a5b5abababa4a3ba2b2ab3b4ab2aba4a3ba2b2ab3b4原式x32y3x3y3x3y3xyx2xyy2x3y3x3y3xyx2xyy2xyx2xyy2原式x23y2.x2y2x22x2y2y22xyxyx2y22x2y2xyxyx2y2xyx2y22x4x2y2y4x2y2xyx2y2222222x2y2 z2x2y2z2原式中與a3b3ab33abab原式x2y2z2x233x2y2z2x2x2y2z2x2y2z2y2z233x2y2z2x2y2z2y2z23x2y2zxzxy2z2原式ab33ababc3ab3c33abababcab2cabc23abababca2b2c2abbcca評(píng) a3b3c31abc2a22b22c22ab2bc2ca21abcab2bc2ca22顯然,當(dāng)abc0時(shí),則a3b3c33abc;abc0時(shí),則a3b3c33abc0a3b3c3≥3abc,而且,當(dāng)且僅當(dāng)abcxa3b3c3≥3abc,而且,當(dāng)且僅當(dāng)abcxa20yb3≥0zc30xy≥3xyz3x15x14x13x2x解 公式anbnx161x1x15x14x13x2x1x1x15x14 x2x原式x xx81x41x21x1xxx81x41x21x1評(píng)注在本題分解過(guò)程中,用到先乘以x1,再除以x的技巧,這一技巧在等式變形中很常用 方法 將常數(shù)項(xiàng)8拆成19.原式x39x1x319xx1x2x19xx1x2x8方法 將一次項(xiàng)9x拆成x8x.原式x3x8xx3x8xxx1x18xx1x2x8方法 將三次項(xiàng)x3拆成9x38x3原式9x3原式9x38x39x9x39x8x39xx1x18x1x2xx1x2x 添加兩項(xiàng)x2x2x39xx3x2x29x原式x2x1x8x1x1x2x(1)x9x6x33(2)m21n214mn(3)x14x212x14(4)a3bab3a21(1)將3拆成111.原式x9x6111x91x61x3x31x6x31x31x31x3x31x62x3x1x2x1x62x33(2)將4mn2mn原式m21n212mn2mnm2n2m2n212mnmn12m原式x142x212x21原式x142x212x212x 2 4 224 x 2xx x x212 222 x1x x22x222x2123x21x23(4)添加兩項(xiàng)abab原式a3bab3a2b21aba3bab3a2ababb2abababaababb2aabbab1abb2aab1abb2a2ab1b2ab評(píng)注(4)是一道較難的題目,由于分解后的因式結(jié)構(gòu)較復(fù)雜,所以不易想到添加abab,而且添加2.2.8x42x32x21.解析原式x42x212x3x2122xx2x21x21x21xbcbccacaabab.解原式bcbccabcabababcbccabccaababacbcabaabcabbccax3x3yzy3zxz3xy.解原式x3yy3xy3zx3zz3xz3xyx2y2zx3y3z3xxyxyxyzx2xyy2z3xyx2yzxyyzzy2z2xyyzx2xyzyz2xyyzzxxyz原式1xx222x31xx2x61xx222x31xx2x3x31xx21xx22x3x3x1xx21xx2x3x4x2x1x2x212母y來(lái)替代,于是原題轉(zhuǎn)化為關(guān)于y的二次三項(xiàng)式的因式分解問(wèn)題了.x2xy原式y(tǒng)1y212y23yy2y5x2x2x2xx1x2x2x5x2x1x2x1u,可以得到同樣的結(jié)果,有興趣的同學(xué)不x23x24x28x390原式x1x22x12x原式x1x22x12x390y2x25x2原式y(tǒng)y190y2yy10y2x25x122x25x2x25x122x7x1對(duì)多項(xiàng)式適當(dāng)?shù)暮愕茸冃问俏覀冋业叫略幕鵤b2abab21ab2.yabxabx22xy2x4yy22yx22xy1y 2xyxy12所以,原式abab1212aa2baa1.解a1x12aa2a122a2x22a2原式x22a2bax2b2x2b2a2b2ab2xx2bax2ab2xababa2ab1272.解析令yx2,則原式y(tǒng)14y14272y22y12y22y12y44y214y32y24yy44y214y32y24y2y412y22y46y22y29y22y3y3y215所以,原式2x5x1x24x19x24x823xx24x82x2解 設(shè)x24x8y,原式y(tǒng)23xy2x2y2xyx26x8x25xx2x4x25x82.2.186x47x336x27x原式6x417xx216x42x212x27xx216x2122x27xx216x2127xx212x213x3x212x23x23x28x2x1x22x213x3x212x23x23x28x2x1x23x1x3 本解法實(shí)際上是將x21看作一個(gè)整體,但并沒(méi)有設(shè)立新元來(lái)代替它,即熟練使用換元法后,76原式 6x7x36 222xx2 1 1x6x 7x 362 2x x令x1t,則x2 t22,于1x原式x26t227tx26t27t24x22t33t2 1 1x2xx33xx =2x23x23x28x2x1x23x1x3x2xyy224xyx2y2元對(duì)稱(chēng)式.對(duì)于較難分解的二元對(duì)稱(chēng)式,經(jīng)常令uxyvxy2原式xy2xy4xyxy22xyxyuxyv原式u2v24vu2u2u46u2vx22xyy23xy2x2xyy22 2xy3y22x10y8原式x3yxy2x10y解x3y4xy2xx4x2abxabxx4x2abxababx2acbdxcd十字相乘法把它分解成xaxb或axdbxc的形于原式中的ey,第一、第三列構(gòu)成的十字交叉之積的和等于原式中的dx.6x213xy6y222x23y20解析原式2x3y3x2y22x23y2x3y43x2y5.其十字相乘圖-45-6x27xy3y2xz7yz2z2原式2x3y3xyxz7yz2x3yz3xy2z.其十字相乘圖-zy-x1x2x3x424原式x25x4x25x6x25x4x25xx25x4x25x42=x25x422x25x4x25x46x25x4xx5x25x10對(duì)于形如exaxbxcxdf(a、b、cd、ef為常數(shù)abcdxaxb與xcxd分別相乘后,構(gòu)成有相同部分:x2abxx2cdx的項(xiàng)x2x3x8x124x2.解原式x214x24x211x24x214x24x214x243xx214x2423xx214x24x214x244xx214x24x210x24x215xx4x6x15129x1512922對(duì)地形如exaxbxcxdfx2(a、b、c、d、e為常數(shù)abcdxaxb與xcxdx2abx2cdx23y28z22xy2xz14yzx22xy3y2x3yxyx23y28z22xy2xz14yzx3ymzxynzx22xy3y2mnxzx22xy3y2mnxz3nmyzmnz2mn2,3nm14mnm2,n4所以,原式x3y2zxy4z2.2.26x4x34x23x5x4x34x23xx2ax1x2bxx4abx3ab6x25abxabab645ab解之,得a1b2所以,原式x2x1x22x式x2ax1x2bx5.2.2.27kx2y23x7kx2y2xyxyx2y23x7yk那么它的兩個(gè)一次因式一定是xym與xyn的形式,其中mnx2y23x7y設(shè)xymxynx2y23x7yx2xymxxyy2mynxnyx2y2mnxnmymnmnnmmnmmnnmmnm5,解之,得nk10x2y23x7yk可以分解成兩個(gè)一次因式的乘積xy5xy2因此,當(dāng)k102.2.28a4ab4b4解 因?yàn)閍4b4ab44a3b6a2b2ab44abab22ab2所以,原式a4b4aab44abab22ab2a2ab42abab2ab222ab22a2b2ab2xyz5x5y5z5 這個(gè)式子是關(guān)于x、y、z的五次齊次對(duì)稱(chēng)式,令xy,則原式0故原式有因式xy.同理,亦有因式y(tǒng)z,zx.這樣原式還有一個(gè)二次齊次對(duì)稱(chēng)式kx2y2z2lxyyzzx.所以,可原式xyyzzxkx2y2z2lxyyzzx.xy1z0時(shí),得152kl①x2y1z0355k2lk5,l5所以,原式5xyyzzxx2y2z2xyyzzx2.2.30★★分aba2b2bcb2c2cac2a2② 當(dāng)ab時(shí),易知原式0,所以原式有因式ab.同理,bc與ca也都是原式的因式.但四次多項(xiàng)式應(yīng)有四個(gè)一次因式,由對(duì)稱(chēng)性余下的一個(gè)因式必有為abc 當(dāng)ab時(shí),易知原式0,所以原式有因式ab.同理,bc與ca也都是原式的因式.但四次多項(xiàng)式應(yīng)有四個(gè)一次因式,由對(duì)稱(chēng)性余下的一個(gè)因式必有為abc,故可設(shè)aba2b2bb2c2cac2a2kabcabbcca233k112.解得ka0b1c21.所以,原式=abcabbccaa2bc2b2ca2c2ab2abcabca2b2c2abbcca解析所給的式子是一個(gè)四次對(duì)稱(chēng)式.若令ab,則原式b2bc2b2cb2b2c22b2b2bc2cb2c2c22b2b2b2c22bcb22bcc22c22b20所以,原式含有因式ab同理,原式含有因式bcca于是,原式含有因式abbcca由于原式為四次對(duì)稱(chēng)式,故還有因式kabc,其中k為待定系數(shù).所以,原式kabbccaabc.比較等式兩邊a3b的系數(shù),得k所以,原式abbccaabc(1)a9ba3b a6.a(chǎn)23a a2aa a 解析 2 a6a23a a2aa6a1a a2aa1a26aa1a2aa29aa1a2a a10a a10.a(chǎn)1a2aa2(1)x;(2)2xyxyxyxyxx1x1 解析(1)xa29aa1a2a a10a a10.a(chǎn)1a2aa2(1)x;(2)2xyxyxyxyxx1x1 解析(1)x1 xxx 1(2)xyxyx2xyx22xyxy xx x 2x2x.x x2a23a2a2a53a24a52a28a.a(chǎn)aaa解 2a22aa11a22a3a63a26a2a4 2a26a2a6原式aaaa2a11a313a212a21aa2a2a2a1a33a22a21111aa a1111 a a a a1a1a a2aa2a3a1aa1a2a2a8aa1a2a2a.11248 1 1 1 1 1 1a2ababa2原式1a1a2481a11 1 1 122481 111248 1 1 1 1 1 1a2ababa2原式1a1a2481a11 1 1 122481 1 1 1 121a221a2481a21a21 1 14481 1 1 1881 1 1 1 1.1 12ab2bc2ca.a(chǎn)2abac b2abbc c2acbc解 本題如果直接通分化為同分母去處較繁而通過(guò)分子拆項(xiàng)分母分解之后利用xy11 原式abacbcbacacaba bcb cac111111a a b b c c02.3.6x23x10x21x21x3x10x0x13x 22xx 11x2 x 27x評(píng) 這里利用x與1互為倒數(shù)的特點(diǎn).巧妙地運(yùn)用乘法公式加以變形,使問(wèn)題變得較簡(jiǎn)單.同x 11x3 x x12 x2 x37118 x4 x2247x22x3xy2x1x2xy xy 11x3 x x12 x2 x37118 x4 x2247x22x3xy2x1x2xy xy5xy5xy2x3xy2y2xy3xy25xy3xy1xyx2xy5xy xyz.zxz xyxz yxyz 直接通分比較繁,考慮到這里主要涉及xy,yz,zx三個(gè)式子,不妨用換元法.使所求xyayzbzxc,則abc0原式bcacab a3b3ab33abab c33abc32.3.9xyz1xyz2x2y2z216求 xy yz zx2解 因?yàn)閤yz2兩邊平方得x2y2z22xy2yz2zx4已知x2y2z216所以1x2y11xyyzzx6.又z2xy.xyxy42x211y2z11z2x,yzzx2111原式x2y y2z z2xx2y2zx2y2zxyzzyx2xyyzzx4xyz24 1128 2.3.10★★若abc1abcaba bcb cac原式因?yàn)閍bc1a、b、caababcaba abcb abcacaaba abcxyzzyx2xyyzzx4xyz24 1128 2.3.10★★若abc1abcaba bcb cac原式因?yàn)閍bc1a、b、caababcaba abcb abcacaaba abcab abcaabca1aba11ab a1aab11aba 因?yàn)閍bc1,所以a0,b0,c0abbc原式aba bcb bcac1bb1 bcb bcabc1bb1 bcb11bc1由abc1,得a 1bc原式 1b1bcbc1c 1bb1 bcb11bc111.x23x x25x x27x111原式x2x x2x x3x111111x x2x x3x x411 .x x x25x1xnxn11與x xn2.3.12xyzx14y11z17xyzyz 解 因?yàn)?x1xy1zz11與x xn2.3.12xyzx14y11z17xyzyz 解 因?yàn)?x1xy1zzx1z7x xx7x371 4x44x3x4x37x34x212x902x320x3z5y2xyz2352.3.13xyz3a(a0xyz不全相等xayayazazaxxa2ya2zxa,yaxau,yav,zaw,則分式uvvwwu,且由已知有uvw0.將uvwu2v2u2v2w22uvuwwu0xyz不全相等,所以u(píng)、vw不全為零,所以u(píng)2v2w20uvvwwu1u2v2 即所求分式的值為122.3.14xyz,求xyza b cxyzk設(shè)a b cxabk,ybck,zcak.xyzabkbckcak0a xyz2.3.15★★已知 1, 0, xabk,ybck,zcak.xyzabkbckcak0a xyz2.3.15★★已知 1, 0, 的值 解 令xu,yv,zw,于是條件變uvw

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論