版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆湖北省武漢市華中師大一附中數(shù)學高一第二學期期末學業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列的前項和為,且,,則()A.200 B.210 C.400 D.4102.已知為第Ⅱ象限角,則的值為()A. B. C. D.3.圓的半徑為()A.1 B.2 C.3 D.44.已知數(shù)列{an}滿足a1=2A.2 B.-3 C.-125.在中,分別為角的對邊,若的面積為,則的值為()A. B. C. D.6.擲兩顆均勻的骰子,則點數(shù)之和為5的概率等于()A. B. C. D.7.已知等差數(shù)列的首項,公差,則()A.5 B.7 C.9 D.118.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,b=c,且滿足=,若點O是△ABC外一點,∠AOB=θ(0<θ<π),OA=2OB=2,則平面四邊形OACB面積的最大值是()A. B. C.3 D.9.為了得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中,,則A的取值范圍為______.12.已知向量,,則______.13.有一個底面半徑為2,高為2的圓柱,點,分別為這個圓柱上底面和下底面的圓心,在這個圓柱內(nèi)隨機取一點P,則點P到點或的距離不大于1的概率是________.14.實數(shù)x、y滿足,則的最大值為________.15.據(jù)兩個變量、之間的觀測數(shù)據(jù)畫成散點圖如圖,這兩個變量是否具有線性相關(guān)關(guān)系_____(答是與否).16.若實數(shù),滿足,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式.18.已知,a,b,c分別為角A,B,C的對邊,且,,,求角A的大?。?9.已知數(shù)列的前項和為,且,.(1)試寫出數(shù)列的任意前后兩項(即、)構(gòu)成的等式;(2)用數(shù)學歸納法證明:.20.已知向量,.(1)若,在集合中取值,求滿足的概率;(2)若,在區(qū)間內(nèi)取值,求滿足的概率.21.設函數(shù)(1)若對于一切實數(shù)恒成立,求的取值范圍;(2)若對于恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
首先利用遞推關(guān)系式求出數(shù)列的通項公式,進一步利用等差數(shù)列的前項和公式的應用求出結(jié)果.【題目詳解】由題,,又因為所以當時,可解的當時,,與相減得當為奇數(shù)時,數(shù)列是以為首相,為公差的等差數(shù)列,當為偶數(shù)時,數(shù)列是以為首相,為公差的等差數(shù)列,所以當為正整數(shù)時,,則故選B.【題目點撥】本題考查的知識點有數(shù)列通項公式的求法及應用,等差數(shù)列的前項和公式的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于一般題.2、B【解題分析】
首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【題目詳解】因為,所以或,又為第Ⅱ象限角,故,.因為為第Ⅱ象限角即,所以,,即為第Ⅰ,Ⅲ象限角.由于,解得,故選B.【題目點撥】本題主要考查二倍角公式的應用以及象限角的集合應用.3、A【解題分析】
將圓的一般方程化為標準方程,確定所求.【題目詳解】因為圓,所以,所以,故選A.【題目點撥】本題考查圓的標準方程與一般方程互化,圓的標準方程通過展開化為一般方程,圓的一般方程通過配方化為標準方程,屬于簡單題.4、D【解題分析】
先通過列舉找到數(shù)列的周期,再利用數(shù)列的周期求值.【題目詳解】由題得a2所以數(shù)列的周期為4,所以a2020故選:D【題目點撥】本題主要考查遞推數(shù)列和數(shù)列的周期,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、B【解題分析】試題分析:由已知條件及三角形面積計算公式得由余弦定理得考點:考查三角形面積計算公式及余弦定理.6、B【解題分析】
試題分析:擲兩顆均勻的骰子,共有36種基本事件,點數(shù)之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點:概率問題7、C【解題分析】
直接利用等差數(shù)列的通項公式,即可得到本題答案.【題目詳解】由為等差數(shù)列,且首項,公差,得.故選:C【題目點撥】本題主要考查利用等差數(shù)列的通項公式求值,屬基礎題.8、A【解題分析】
根據(jù)正弦和角公式化簡得是正三角形,再將平面四邊形OACB面積表示成的三角函數(shù),利用三角函數(shù)求得最值.【題目詳解】由已知得:即所以即又因為所以所以又因為所以是等邊三角形.所以在中,由余弦定理得且因為平面四邊形OACB面積為當時,有最大值,此時平面四邊形OACB面積有最大值,故選A.【題目點撥】本題關(guān)鍵在于把所求面積表示成角的三角函數(shù),屬于難度題.9、D【解題分析】
由函數(shù),根據(jù)三角函數(shù)的圖象變換,即可求解,得到答案.【題目詳解】由題意,函數(shù),為了得到函數(shù)的圖象,只需將函數(shù)的圖象向右平移個單位,故選D.【題目點撥】本題主要考查了三角函數(shù)的圖象變換,以及正弦的倍角公式的應用,著重考查了推理與運算能力,屬于基礎題.10、D【解題分析】
先求出AB的長,再求點P到直線AB的最小距離和最大距離,即得△ABP面積的最小值和最大值,即得解.【題目詳解】由題得,由題得圓心到直線AB的距離為,所以點P到直線AB的最小距離為2-1=1,最大距離為2+1=3,所以△ABP的面積的最小值為,最大值為.所以△ABP的面積的取值范圍為[1,3].故選D【題目點撥】本題主要考查點到直線的距離的計算,考查面積的最值問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由正弦定理將sin2A≤sin2B+sin2C-sinBsinC變?yōu)椋缓笥糜嘞叶ɡ硗普摽汕?,進而根據(jù)余弦函數(shù)的圖像性質(zhì)可求得角A的取值范圍.【題目詳解】因為sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因為,所以.【題目點撥】在三角形中,已知邊和角或邊、角關(guān)系,求角或邊時,注意正弦、余弦定理的運用.條件只有角的正弦時,可用正弦定理的推論,將角化為邊.12、【解題分析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【題目詳解】由題意得,.,.,,.故答案為:.【題目點撥】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎.本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.13、【解題分析】
本題利用幾何概型求解.先根據(jù)到點的距離等于1的點構(gòu)成圖象特征,求出其體積,最后利用體積比即可得點到點,的距離不大于1的概率;【題目詳解】解:由題意可知,點P到點或的距離都不大于1的點組成的集合分別以、為球心,1為半徑的兩個半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【題目點撥】本題主要考查幾何概型、圓柱和球的體積等基礎知識,考查運算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.關(guān)鍵是明確滿足題意的測度為體積比.14、【解題分析】
根據(jù)約束條件,畫出可行域,將目標函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【題目詳解】由約束條件,畫出可行域,如圖所示,化目標函數(shù)為,由圖可知,當直線過點時,直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【題目點撥】本題考查線性規(guī)劃求最大值,屬于簡單題.15、否【解題分析】
根據(jù)散點圖的分布來判斷出兩個變量是否具有線性相關(guān)關(guān)系.【題目詳解】由散點圖可知,散點圖分布無任何規(guī)律,不在一條直線附近,所以,這兩個變量沒有線性相關(guān)關(guān)系,故答案為否.【題目點撥】本題考查利用散點圖判斷兩變量之間的線性相關(guān)關(guān)系,考查對散點圖概念的理解,屬于基礎題.16、【解題分析】
由題意可得=≥2=2,由不等式的性質(zhì)變形可得.【題目詳解】∵正實數(shù)a,b滿足,∴=≥2=2,∴ab≥2當且僅當=即a=且b=2時取等號.故答案為2.【題目點撥】本題考查基本不等式求最值,涉及不等式的性質(zhì),屬基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解題分析】
(1)利用數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列是等比數(shù)列;(2)確定等比數(shù)列的首項和公比,求出數(shù)列的通項公式,即可求出.【題目詳解】(1),,因此,數(shù)列是等比數(shù)列;(2)由于,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,.【題目點撥】本題考查等比數(shù)列的證明,同時也考查了數(shù)列通項的求解,考查推理能力與計算能力,屬于中等題.18、【解題分析】
由正弦定理得,即得,再利用余弦定理求解.【題目詳解】因為在三角形ABC中,由正弦定理得.又因為,所以得,由余弦定理得.又三角形內(nèi)角在.故角A為.【題目點撥】本題主要考查正弦定理余弦定理解三角形,意在考查學生對這些知識的理解掌握水平.19、(1);(2)證明見解析.【解題分析】
(1)由,可得出,兩式相減,化簡即可得出結(jié)果;(2)令代入求出的值,再由求出的值,可驗證和時均滿足,并假設當時等式成立,利用數(shù)學歸納法結(jié)合數(shù)列的遞推公式推導出時等式也成立,綜合可得出結(jié)論.【題目詳解】(1)對任意的,由可得,上述兩式相減得,化簡得;(2)①當時,由可得,解得,滿足;②當時,由于,則,滿足;③假設當時,成立,則有,由于,則.這說明,當時,等式也成立.綜合①②③,.【題目點撥】本題考查數(shù)列遞推公式的求解,同時也考查了利用數(shù)學歸納法證明數(shù)列的通項公式,考查計算能力與推理能力,屬于中等題.20、(1)(2)【解題分析】
(1)首先求出包含的基本事件個數(shù),由,由向量的坐標運算可得,列出滿足條件的基本事件個數(shù),根據(jù)古典概型概率計算公式即可求解.(2)根據(jù)題意全部基本事件的結(jié)果為,滿足的基本事件的結(jié)果為,利用幾何概型概率計算公式即可求解.【題目詳解】(1),的所有取值共有個基本事件.由,得,滿足包含的基本事件為,,,,,共種情形,故.(2)若,在上取值,則全部基本事件的結(jié)果為,滿足的基本事件的結(jié)果為.畫出圖形如圖,正方形的面積為,陰影部分的面積為,故滿足的概率為.【題目點撥】本題考查了古典概型概率計算公式、幾何概型概率計算公式,屬于基礎題.21、(1)(2)【解題分析】
(1)由不等式恒成立,結(jié)合二次函數(shù)的性質(zhì),分類討論,即可求解;(2)要使對于恒成立,整理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年河北石家莊財經(jīng)職業(yè)學院招聘17人考試筆試備考題庫及答案解析
- 少先隊工作經(jīng)驗分享與建議
- 2025湖南郴州高新區(qū)綜合服務中心招募見習生6人考試筆試模擬試題及答案解析
- 2025黑龍江省乳制品行業(yè)市場競爭與發(fā)展?jié)摿ι疃日{(diào)研報告
- 2025黑色金屬行業(yè)的市場深度調(diào)研及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025黑山旅游業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y調(diào)整布局規(guī)劃報告匯編
- 2025香蕉蘋果種植技術(shù)優(yōu)化及產(chǎn)值評估分析項目報告
- 2025預制菜食品加工設備行業(yè)市場前瞻需求供給潛力及投資評估規(guī)劃分析報告
- 2025韓國生物制藥原料市場競爭態(tài)勢分析及投資機會規(guī)劃研究報告
- 2025韓國智能電視行業(yè)應用拓展分析及投資生態(tài)構(gòu)建規(guī)劃分析研究報告
- 啦啦操課件教學課件
- 2025年及未來5年市場數(shù)據(jù)中國拋光液市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- 2026年網(wǎng)絡安全法培訓課件
- 2025年全國新能源電力現(xiàn)貨交易價格趨勢報告
- 2025重慶市涪陵區(qū)人民政府江東街道辦事處選聘本土人才5人(公共基礎知識)測試題附答案解析
- 2025智慧物流系統(tǒng)市場發(fā)展趨勢技術(shù)創(chuàng)新市場競爭態(tài)勢與商業(yè)模式演進深度研究報告
- GB/T 46476-2025電工鋼帶和鋼片幾何特性的測量方法
- 2025西部機場集團航空物流有限公司招聘筆試考試參考試題及答案解析
- 【生物】考點總復習-2025-2026學年人教版生物八年級上冊
- 北京市朝陽區(qū)2024-2025學年五年級上學期期末考試語文試題
- 2025年網(wǎng)絡運維工程師專業(yè)技術(shù)考試試題及答案
評論
0/150
提交評論