山東省泰安岱岳區(qū)六校聯(lián)考2022年數(shù)學(xué)九上期末綜合測試試題含解析_第1頁
山東省泰安岱岳區(qū)六校聯(lián)考2022年數(shù)學(xué)九上期末綜合測試試題含解析_第2頁
山東省泰安岱岳區(qū)六校聯(lián)考2022年數(shù)學(xué)九上期末綜合測試試題含解析_第3頁
山東省泰安岱岳區(qū)六校聯(lián)考2022年數(shù)學(xué)九上期末綜合測試試題含解析_第4頁
山東省泰安岱岳區(qū)六校聯(lián)考2022年數(shù)學(xué)九上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.拋擲一枚均勻的骰子,所得的點數(shù)能被3整除的概率為()A. B. C. D.2.如圖物體由兩個圓錐組成,其主視圖中,.若上面圓錐的側(cè)面積為1,則下面圓錐的側(cè)面積為()A.2 B. C. D.3.如圖,重慶歡樂谷的摩天輪是西南地區(qū)最高的摩天輪,號稱“重慶之限”.摩天輪是一個圓形,直徑AB垂直水平地面于點C,最低點B離地面的距離BC為1.6米.某天,媽媽帶著洋洋來坐摩天輪,當(dāng)她站在點D仰著頭看見摩天輪的圓心時,仰角為37o,為了選擇更佳角度為洋洋拍照,媽媽后退了49米到達(dá)點D’,當(dāng)洋洋坐的橋廂F與圓心O在同一水平線時,他俯頭看見媽媽的眼睛,此時俯角為42o,已知媽媽的眼睛到地面的距離為1.6米,媽媽兩次所處的位置與摩天輪在同一平面上,則該摩天輪最高點A離地面的距離AC約是()(參考數(shù)據(jù):sin37o≈0.60,tan37o≈0.75,sin42o≈0.67,tan42o≈0.90)A.118.8米 B.127.6米 C.134.4米 D.140.2米4.將拋物線向左平移2個單位后所得到的拋物線為()A. B.C. D.5.由于受豬瘟的影響,今年9月份豬肉的價格兩次大幅上漲,瘦肉價格由原來每千克23元,連續(xù)兩次上漲后,售價上升到每千克40元,則下列方程中正確的是()A. B.C. D.6.圓心角為140°的扇形的半徑為3cm,則這個扇形的面積是()cm1.A.π B.3π C.9π D.6π7.如圖,平行四邊形ABCD中,EF∥BC,AE:EB=2:3,EF=4,則AD的長為()A. B.8 C.10 D.168.四邊形為平行四邊形,點在的延長線上,連接交于點,則下列結(jié)論正確的是()A. B. C. D.9.二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,其對稱軸為直線x=﹣1,與x軸的交點為(x1,1)、(x2,1),其中1<x2<1,有下列結(jié)論:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④當(dāng)m為任意實數(shù)時,a﹣b≤am2+bm;⑤3a+c=1.其中,正確的結(jié)論有()A.①③④ B.①②④ C.③④⑤ D.①③⑤10.某路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)小明到達(dá)該路口時,遇到紅燈的概率是()A. B. C. D.1二、填空題(每小題3分,共24分)11.某種品牌運動服經(jīng)過兩次降價,每件零售價由560元降為315元,已知兩次降價的百分率相同,求每次降價的百分率設(shè)每次降價的百分率為x,所列方程是______.12.如圖,平行四邊形中,,.以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點.若用扇形圍成一個圓維的側(cè)面,記這個圓錐的底面半徑為;若用扇形圍成另一個圓錐的側(cè)面,記這個圓錐的底面半徑為,則的值為______.13.我市某公司前年繳稅40萬元,今年繳稅48.4萬元.該公司繳稅的年平均增長率為.14.若關(guān)于的一元二次方程有實數(shù)根,則的取值范圍是_______.15.在國家政策的宏觀調(diào)控下,某市的商品房成交均價由去年10月份的7000元/m2下降到12月份的5670元/m2,則11、12兩月平均每月降價的百分率是_____.16.設(shè)、是關(guān)于的方程的兩個根,則__________.17.如圖,扇形ABC的圓心角為90°,半徑為6,將扇形ABC繞A點逆時針旋轉(zhuǎn)得到扇形ADE,點B、C的對應(yīng)點分別為點D、E,若點D剛好落在上,則陰影部分的面積為_____.18.如圖,在矩形中,.若將繞點旋轉(zhuǎn)后,點落在延長線上的點處,點經(jīng)過的路徑為,則圖中陰影部分的面積為______.三、解答題(共66分)19.(10分)已知:如圖,,點在射線上.求作:正方形,使線段為正方形的一條邊,且點在內(nèi)部.20.(6分)某校為了解節(jié)能減排、垃圾分類等知識的普及情況,從該校2000名學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,調(diào)查結(jié)果分為“非常了解”、“了解”、“了解較少”、“不了解”四類,并將調(diào)查結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:(1)補全條形統(tǒng)計圖并填空,本次調(diào)查的學(xué)生共有名,估計該校2000名學(xué)生中“不了解”的人數(shù)為.(2)“非常了解”的4人中有A1、A2兩名男生,B1、B2兩名女生,若從中隨機(jī)抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖或列表的方法,求恰好抽到兩名男生的概率.21.(6分)如圖,已知拋物線與x軸交于點A、B,與y軸分別交于點C,其中點,點,且.(1)求拋物線的解析式;(2)點P是線段AB上一動點,過P作交BC于D,當(dāng)面積最大時,求點P的坐標(biāo);(3)點M是位于線段BC上方的拋物線上一點,當(dāng)恰好等于中的某個角時,求點M的坐標(biāo).22.(8分)用一段長為28m的鐵絲網(wǎng)與一面長為8m的墻面圍成一個矩形菜園,為了使菜園面積盡可能的大,給出了甲、乙兩種圍法,請通過計算來說明這個菜園長、寬各為多少時,面積最大?最大面積是多少?23.(8分)小明按照列表、描點、連線的過程畫二次函數(shù)的圖象,下表與下圖是他所完成的部分表格與圖象,求該二次函數(shù)的解析式,并補全表格與圖象.24.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點M,若H是AC的中點,連接MH.(1)求證:MH為⊙O的切線.(2)若MH=,tan∠ABC=,求⊙O的半徑.(3)在(2)的條件下分別過點A、B作⊙O的切線,兩切線交于點D,AD與⊙O相切于N點,過N點作NQ⊥BC,垂足為E,且交⊙O于Q點,求線段NQ的長度.25.(10分)在矩形ABCD中,AB=3,AD=5,E是射線DC上的點,連接AE,將△ADE沿直線AE翻折得△AFE.(1)如圖①,點F恰好在BC上,求證:△ABF∽△FCE;(2)如圖②,點F在矩形ABCD內(nèi),連接CF,若DE=1,求△EFC的面積;(3)若以點E、F、C為頂點的三角形是直角三角形,則DE的長為.26.(10分)解下列方程:(1)(y﹣1)2﹣4=1;(2)3x2﹣x﹣1=1.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】拋擲一枚骰子有1、2、3、4、5、6種可能,其中所得的點數(shù)能被3整除的有3、6這兩種,∴所得的點數(shù)能被3整除的概率為,故選B.【點睛】本題考查了簡單的概率計算,熟記概率的計算公式是解題的關(guān)鍵.2、D【分析】先證明△ABD為等腰直角三角形得到∠ABD=45°,BD=AB,再證明△CBD為等邊三角形得到BC=BD=AB,利用圓錐的側(cè)面積的計算方法得到上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,從而得到下面圓錐的側(cè)面積.【詳解】∵∠A=90°,AB=AD,∴△ABD為等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD為等邊三角形,∴BC=BD=AB,∵上面圓錐與下面圓錐的底面相同,∴上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,∴下面圓錐的側(cè)面積=×1=.故選D.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了等腰直角三角形和等邊三角形的性質(zhì).3、B【分析】連接EB,根據(jù)已知條件得到E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,求得BH=FH=OB,設(shè)AO=OB=r,解直角三角形即可得到結(jié)論.【詳解】解:連接EB,∵D′E′=DE=BC=1.6∴E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,∴BH=FH=OB,設(shè)AO=OB=r,∴FH=BH=r,∵∠OEB=37°,∴tan37°=,∴BE=,∴EH=BD-BH=,∵EE′=DD′=49,∴E′H=49+,∵∠FE′H=42°,∴tan42°=,解得r≈63,∴AC=2×63+1.6=127.6米,故選:B.【點睛】本題考查了解直角三角形——仰角與俯角問題,正方形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.4、D【分析】根據(jù)拋物線的平移規(guī)律“上加下減,左加右減”求解即可.【詳解】解:將拋物線向左平移2個單位后所得到的拋物線為:.故選D.【點睛】本題考查了拋物線的平移,屬于基礎(chǔ)知識,熟知拋物線的平移規(guī)律是解題的關(guān)鍵.5、A【分析】根據(jù)增長率a%求出第一次提價后的售價,然后再求第二次提價后的售價,即可得出答案.【詳解】根據(jù)題意可得:23(1+a%)2=40,故答案選擇A.【點睛】本題考查的是一元二次方程在實際生活中的應(yīng)用,比較簡單,記住公式“增長后的量=增長前的量×(1+增長率)”.6、D【解析】試題分析:扇形面積的計算公式為:,故選擇D.7、C【分析】根據(jù)平行于三角形一邊的直線和其他兩邊相交,所截得的三角形與原三角形相似,可證明△AEF∽△ABC,再根據(jù)相似三角形的對應(yīng)邊成比例可解得BC的長,而在?ABCD中,AD=BC,問題得解.【詳解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四邊形ABCD是平行四邊形,∴AD=BC=1.【點睛】本題考查(1)、相似三角形的判定與性質(zhì);(2)、平行四邊形的性質(zhì).8、D【分析】根據(jù)四邊形為平行四邊形證明,從而出,對各選項進(jìn)行判斷即可.【詳解】∵四邊形為平行四邊形∴∴∴∴∵,∴故答案為:D.【點睛】本題考查了平行四邊形的線段比例問題,掌握平行四邊形的性質(zhì)、相似三角形的性質(zhì)以及判定是解題的關(guān)鍵.9、A【分析】根據(jù)函數(shù)圖象和二次函數(shù)的性質(zhì),可以判斷各個小題中的結(jié)論是否成立,本題得以解決.【詳解】∵二次函數(shù)y=ax2+bx+c(a≠1)的圖象與x軸有兩個交點,∴b2﹣4ac>1,故①正確;∵該函數(shù)圖象的對稱軸是x=﹣1,當(dāng)x=1時的函數(shù)值小于﹣1,∴x=﹣2時的函數(shù)值和x=1時的函數(shù)值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②錯誤;∵該函數(shù)圖象的對稱軸是x=﹣1,與x軸的交點為(x1,1)、(x2,1),其中1<x2<1,∴﹣3<x,1<﹣2,故③正確;∵當(dāng)x=﹣1時,該函數(shù)取得最小值,∴當(dāng)m為任意實數(shù)時,a﹣b≤am2+bm,故④正確;∵1,∴b=2a.∵x=1時,y=a+b+c>1,∴3a+c>1,故⑤錯誤.故選:A.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.10、C【分析】根據(jù)隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用紅燈亮的時間除以以上三種燈亮的總時間,即可得出答案.【詳解】解:∵每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,∴紅燈的概率是:.故答案為:C.【點睛】本題考查的知識點是簡單事件的概率問題,熟記概率公式是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)降價后的價格=降價前的價格×(1-降價的百分率),則第一次降價后的價格是560(1-x),第二次降價后的價格是560(1-x)2,據(jù)此列方程即可.【詳解】解:設(shè)每次降價的百分率為x,由題意得:560(1-x)2=1,故答案為560(1-x)2=1.【點睛】本題考查了由實際問題抽象出一元二次方程,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列出方程.12、1【分析】設(shè)AB=a,根據(jù)平行四邊形的性質(zhì)分別求出弧長EF與弧長BE,即可求出的值.【詳解】設(shè)AB=a,∵∴AD=1.5a,則DE=0.5a,∵平行四邊形中,,∴∠D=120°,∴l(xiāng)1弧長EF==l2弧長BE==∴==1故答案為:1.【點睛】此題主要考查弧長公式,解題的關(guān)鍵是熟知弧長公式及平行四邊形的性質(zhì).13、10%.【解析】設(shè)該公司繳稅的年平均增長率是x,則去年繳稅40(1+x)萬元,今年繳稅40(1+x)(1+x)=40(1+x)2萬元.據(jù)此列出方程:40(1+x)2=48.4,解得x=0.1或x=-2.1(舍去).∴該公司繳稅的年平均增長率為10%.14、【分析】對于一元二次方程,當(dāng)時有實數(shù)根,由此可得m的取值范圍.【詳解】解:由題意可得,解得.故答案為:.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,熟練掌握一元二次方程根的判別式是解題的關(guān)鍵.15、10%【分析】設(shè)11、12兩月平均每月降價的百分率是x,那么11月份的房價為7000(1?x),12月份的房價為7000(1?x)2,然后根據(jù)12月份的價格即可列出方程解決問題.【詳解】解:設(shè)11、12兩月平均每月降價的百分率是x,由題意,得:7000(1﹣x)2=5670,解得:x1=0.1=10%,x2=1.9(不合題意,舍去).故答案為:10%.【點睛】本題是一道一元二次方程的應(yīng)用題,與實際生活結(jié)合比較緊密,正確理解題意,找到關(guān)鍵的數(shù)量關(guān)系,然后列出方程是解題的關(guān)鍵.16、1【分析】根據(jù)根與系數(shù)的關(guān)系確定和,然后代入計算即可.【詳解】解:∵∴=-3,=-5∴-3-(-5)=1故答案為1.【點睛】本題主要考查了根與系數(shù)的關(guān)系,牢記對于(a≠0),則有:,是解答本題的關(guān)鍵.17、3π+9.【分析】直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進(jìn)而得出答案.【詳解】解:連接BD,過點B作BN⊥AD于點N,∵將半徑為4,圓心角為90°的扇形BAC繞A點逆時針旋轉(zhuǎn)60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=3,BN=3,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD=﹣(﹣×6×3)=3π+9.故答案為3π+9.【點睛】本題主要考查了扇形的面積求法以及等邊三角形的判定與性質(zhì).正確得出△ABD是等邊三角形是關(guān)鍵.18、【分析】先利用直角三角形的性質(zhì)和勾股定理求出BD和BC的長,再求出和扇形BDE的面積,兩者作差即可得.【詳解】由矩形的性質(zhì)得:的面積為扇形BDE所對的圓心角為,所在圓的半徑為BD則扇形BDE的面積為所以圖中陰影部分的面積為故答案為:.【點睛】本題考查了矩形的性質(zhì)、直角三角形的性質(zhì)、勾股定理、旋轉(zhuǎn)的性質(zhì)、扇形的面積公式,這是一道基礎(chǔ)類綜合題,求出扇形BDE的面積是解題關(guān)鍵.三、解答題(共66分)19、見詳解【分析】先以點B為圓心,以BD為半徑畫弧,作出點E,再分別以點D,點E為圓心,以BD為半徑畫弧,作出點F,連結(jié)即可作出正方形.【詳解】如圖,作法:1.以點B為圓心,以BD長為半徑畫弧,交AB于點E;2.分別以點D,點E為圓心,以BD長為半徑畫弧,兩弧相交于點F,3.連結(jié)EF,FD,∴四邊形DBEF即為所求作的正方形.理由:∵BD=DF=FE=EB∴四邊形DBEF為菱形,∵∴四邊形DBEF是正方形.【點睛】本題主要考查了基本作圖,正方形的判定.解題的關(guān)鍵是熟記作圖的方法及正方形的判定.20、(1)圖詳見解析,50,600;(2).【分析】(1)由“非常了解”的人數(shù)及其所占百分比求得總?cè)藬?shù),繼而由各了解程度的人數(shù)之和等于總?cè)藬?shù)求得“不了解”的人數(shù),用總?cè)藬?shù)乘以樣本中“不了解”人數(shù)所占比例可得;(2)分別用樹狀圖和列表兩種方法表示出所有等可能結(jié)果,從中找到恰好抽到2名男生的結(jié)果數(shù),利用概率公式計算可得.【詳解】解:(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為4÷8%=50人,則不了解的學(xué)生人數(shù)為50﹣(4+11+20)=15人,∴估計該校2000名學(xué)生中“不了解”的人數(shù)約有2000×=600人,補圖如下:故答案為:50、600;(2)畫樹狀圖如下:共有12種可能的結(jié)果,恰好抽到2名男生的結(jié)果有2個,∴P(恰好抽到2名男生)==.【點睛】本題考查了列表法與樹狀圖法、扇形統(tǒng)計圖、條形統(tǒng)計圖;通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.21、(1);(2)當(dāng)時,S最大,此時;(3)或【分析】(1)先根據(jù)射影定理求出點,設(shè)拋物線的解析式為:,將點代入求出,然后化為一般式即可;(2)過點P作y軸的平行線交BC于點E,設(shè),用待定系數(shù)法分別求出直線BC,直線AC,直線PD的解析式,表示出點E,點D的坐標(biāo),然后根據(jù)三角形面積公式列出二次函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解即可;(3)分兩種情況求解:當(dāng)時和當(dāng)時.【詳解】(1)∵,,∴,.∵,∴由射影定理可得:,∴,∴點,設(shè)拋物線的解析式為:,將點代入上式得:,∴拋物線的解析式為:;(2)過點P作y軸的平行線交BC于點E,設(shè),設(shè),把,代入得,∴,∴,∴,同樣的方法可求,故可設(shè),把代入得,聯(lián)立解得:,∴,,故當(dāng)時,S最大,此時;(3)由題知,,當(dāng)時,,∴點C與點M關(guān)于對稱軸對稱,∴;當(dāng)時,過M作于F,過F作y軸的平行線,交x軸于G,交過M平行于x軸的直線于K,∵∠,BFM=∠BGF,∴△MFK∽△FGB,同理可證:,∴,,設(shè),則,∴,∴,代入,解得,或(舍去),∴,故或.【點睛】本題考查了待定系數(shù)法求二次函數(shù)、一次函數(shù)解析式,二次函數(shù)的圖像與性質(zhì),一次函數(shù)圖像交點坐標(biāo)與二元一次方程組解的關(guān)系,相似三角形的判定與性質(zhì),以及分類討論的數(shù)學(xué)思想,難度較大,屬中考壓軸題.22、當(dāng)矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.【分析】根據(jù)矩形的面積公式甲圖列出算式可以直接求面積,乙圖設(shè)垂直于墻的一邊為x,則另一邊為(18﹣x)(包括墻長)列出二次函數(shù)解析式即可求解.【詳解】解:如圖甲:設(shè)矩形的面積為S,則S=8×(18﹣8)=2.所以當(dāng)菜園的長、寬分別為10m、8m時,面積為2;如圖乙:設(shè)垂直于墻的一邊長為xm,則另一邊為(18﹣1x﹣8)+8=(18﹣x)m.所以S=x(18﹣x)=﹣x1+18x=﹣(x﹣9)1+81因為﹣1<0,當(dāng)x=9時,S有最大值為81,所以當(dāng)矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.綜上:當(dāng)矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.【點睛】本題考查了二次函數(shù)的應(yīng)用,難度一般,關(guān)鍵在于找到等量關(guān)系列出方程求解,另外注意配方法求最大值在實際中的應(yīng)用23、,(4,1),(1,0)【詳解】分析:利用待定系數(shù)法、描點法即可解決問題;本題解析:設(shè)二次函數(shù)的解析式y(tǒng)=ax2+bx+c.把(-1,0)(0,1),(2,9)代得到解得,∴二次數(shù)解析式y(tǒng)=-x+4x+1.當(dāng)x=4時,y=1,當(dāng)y=0時,x=-1或1.24、(1)證明見解析;(2)2;(3).【分析】(1)連接OH、OM,易證OH是△ABC的中位線,利用中位線的性質(zhì)可證明△COH≌△MOH,所以∠HCO=∠HMO=90°,從而可知MH是⊙O的切線;(2)由切線長定理可知:MH=HC,再由點M是AC的中點可知AC=3,由tan∠ABC=,所以BC=4,從而可知⊙O的半徑為2;(3)連接CN,AO,CN與AO相交于I,由AC、AN是⊙O的切線可知AO⊥CN,利用等面積可求出可求得CI的長度,設(shè)CE為x,然后利用勾股定理可求得CE的長度,利用垂徑定理即可求得NQ.【詳解】解:(1)連接OH、OM,∵H是AC的中點,O是BC的中點∴OH是△ABC的中位線∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB又∵OB=OM,∴∠OMB=∠MBO∴∠COH=∠MOH,在△COH與△MOH中,∵OC=OM,∠COH=∠MOH,OH=OH∴△COH≌△MOH(SAS)∴∠HCO=∠HMO=90°∴MH是⊙O的切線;(2)∵M(jìn)H、AC是⊙O的切線∴HC=MH=∴AC=2HC=3∵tan∠ABC=,∴=∴BC=4∴⊙O的半徑為2;(3)連接OA、CN、ON,OA與CN相交于點I∵AC與AN都是⊙O的切線∴AC=AN,AO平分∠CAD∴AO⊥CN∵AC=3,OC=2∴由勾股定理可求得:AO=∵AC?OC=AO?CI,∴CI=∴由垂徑定理可求得:CN=設(shè)OE=x,由勾股定理可得:∴,∴x=,∴CE=,由勾股定理可求得:EN=,∴由垂徑定理可知:NQ=2EN=.25、(1)證明見解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,證明∠CEF=∠AFB,即可解決問題;(2)過點F作FG⊥DC交DC與點G,交AB于點H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①當(dāng)∠EFC=90°時;②當(dāng)∠ECF=90°時;③當(dāng)∠CEF=90°時三種情況討論解答即可.【詳解】(1)解:在矩形ABCD中,∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論