版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版八年級初二數(shù)學(xué)第二學(xué)期平行四邊形單元期末復(fù)習(xí)專題強(qiáng)化試卷檢測
試卷
一、選擇題
1.如圖,在邊長為5的正方形4BCD中,以A為一個頂點(diǎn),另外兩個頂點(diǎn)在正方形ABCD
的邊上,且含邊長為3的所有大小不同的等腰三角形的個數(shù)為()
A.3B.4C.5D.6
2.如圖,菱形ABCD中,/BAD=60。,AC與BD交于點(diǎn)。,E為CD延長線上的一點(diǎn),且
CD=DE,連結(jié)8E分別交AC,AD于點(diǎn)F、G,連結(jié)0G,則下列結(jié)論:①。G=gAB;②與
△EG。全等的三角形共有5個;③$四崛0(^>5”步;④由點(diǎn)A、B、。、E構(gòu)成的四邊形是菱
形.其中正確的是()
BA
CDE
A.①④B.①③④C.①②③D.②③④
3.如圖,在正方形ABC。中,E,R分別為BC,。。的中點(diǎn),P為對角線AC上的一
個動點(diǎn),則下列線段的長等于BP+EP最小值的是()
B£E
A.ABB.CEC.ACD.AF
4.如圖,在平行四邊形ABC。中,E、尸是對角線AC上的兩點(diǎn)且AE=CF,下列說
法中正確的是()
①BE=DF;②BEHDF;③④四邊形E5F。為平行四邊形;
A.①⑥B.①②④⑥C.①②③④D.①②④⑤⑥
5.如圖,在矩形ABC。中,把矩形ABC。繞點(diǎn)。旋轉(zhuǎn),得到矩形FECG,且點(diǎn)E落在
AO上,連接BE,BG,BG交CE于點(diǎn)、H,連接若FH平分DEFG,則下列結(jié)
論:
@AE+CH=EH;
②NDEC=2NABE;
③BH=HG;
④Ca=2A8,其中正確的個數(shù)是()
A.1個B.2個C.3個D.4個
6.如圖,P為ABCO內(nèi)一點(diǎn),過點(diǎn)P分別作A8,的平行線,交ABCD的四邊
于E、F、G、H四點(diǎn),若BHPE面積為6,GPEO面積為4,則△APC的面積為
()
C.1D.2
7.如圖,正方形ABCD中,對角線4:、8。交于點(diǎn)。,折疊正方形紙片,使落在BC
上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開后折痕。E分別交AB,4:于點(diǎn)E、G,連結(jié)GF,
給出下列結(jié)論①NAGD=110.5。;@SAAGO=SAOGO;③四邊形AEFG是菱形;④8F=0OF;
⑤如果SAOGF=1,那么正方形ABCD的面積是12+8J5,其中正確的有()個.
A.2個B.3個C.4個D.5個
8.如圖,矩形ABC。中,AD=5,4B=7,點(diǎn)E為。C上一個動點(diǎn),把A4DE沿AE
折疊,點(diǎn)D的對應(yīng)點(diǎn)為康,若。0落在NABC的平分線上時,DE的長為()
5_5_55_33-
A.一或2B.一或一C.一或一D.一或2
323255
9.如圖,的對角線4?,8。交于點(diǎn)0,。上平分/4。。交8。于點(diǎn)
E,N8C0=6O。,A0=2AB,連接。E.下列結(jié)論:=AB-BD;②DB平分
NADE;@AB=DE;@5VCD£=SVBOC,其中正確的有()
A.1個B.2個C.3個D.4個
10.如圖,在正方形ABCD中,AB=4,E是CD的中點(diǎn),將BCE沿BE翻折至BFE,連接
r375D.半
5
二、填空題
11.如圖,R3ABC中,ZC=90°,AC=2,BC=5,點(diǎn)D是BC邊上一點(diǎn)且CD=1,點(diǎn)P是線段
DB上一動點(diǎn),連接AP,以AP為斜邊在AP的下方作等腰RMAOP.當(dāng)P從點(diǎn)D出發(fā)運(yùn)動
至點(diǎn)B停止時,點(diǎn)0的運(yùn)動路徑長為.
12.如圖,以RtABC的斜邊AB為一邊,在AB的右側(cè)作正方形ABED,正方形對角線交
于點(diǎn)。,連接8,如果AC=4,8=6播,那么BC=.
13.如圖,在矩形ABCD中,AD=y/2AB,NBA。的平分線交BC于點(diǎn)E,DHJLAE于點(diǎn)
H,連接8H并延長交CD于點(diǎn)F,連接。E交BF于點(diǎn)。,下列結(jié)論:①/AED=/CED;
②0E=0D;(3)BH=HF;④BC-CF=2HE;⑤AB=NF,其中正確的有.
14.如圖,R/AABE中,/8=90°,43=3£,將入486繞點(diǎn)4逆時針旋轉(zhuǎn)45°,得到
AA”。,過。作OCL8E交3E的延長線于點(diǎn)C,連接B”并延長交0c于點(diǎn)尸,連接
DE交BF于點(diǎn)、0.下列結(jié)論:①DE平分N”O(jiān)C;②D0=0E;③CD=HF;
④BC—CF=2CE;⑤”是8尸的中點(diǎn),其中正確的是
15.如圖,在平行四邊形A8CD,AD=2AB,F是AD的中點(diǎn),作CE_LAB,垂足E在線段A8
上,連接EF、CF,則下列結(jié)論:①N8CD=2/DCF;②EF=CF;③SACDF=S△宙;④NDFE=
3NAEF,一定成立的是.(把所有正確結(jié)論的序號都填在橫線上)
16.在A5c中,AB=12,AC=10,BC=9,AD是BC邊上的高.將ABC按如圖所示的方
式折疊,使點(diǎn)A與點(diǎn)D重合,折痕為EF,則OEF的周長為.
17.如圖,已知在AABC中,AB=AC=13,BC=10,點(diǎn)M是AC邊上任意一點(diǎn),連接MB,以
MB,MC為鄰邊作平行四邊形MCNB,連接MN,則MN的最小值是
18.如圖,矩形紙片ABCD,AB=5,BC=3,點(diǎn)P在BC邊上,將4CDP沿DP折疊,點(diǎn)C落
在點(diǎn)E處,PE,DE分別交AB于點(diǎn)0,F,且OP=OF,貝UAF的值為.
19.如圖,長方形ABC。中,AD=26,45=12,點(diǎn)。是8c的中點(diǎn),點(diǎn)尸在AO邊
上運(yùn)動,當(dāng)VBPQ是以QP為腰的等腰三角形時,AP的長為,
20.在菱形A8CD中,M是AD的中點(diǎn),AB=4,N是對角線AC上一動點(diǎn),△DMN的周長
最小是2+2g,則8。的長為.
三、解答題
21.在四邊形ABCD中,NA=NB=NC=ND=90,AB=CD10,
BC=AO=8.
(l)P為邊BC上一點(diǎn),將ABP沿直線AP翻折至AEP的位置(點(diǎn)B落在點(diǎn)E處)
①如圖1,當(dāng)點(diǎn)E落在CD邊上時,利用尺規(guī)作圖,在圖1中作出滿足條件的圖形(不寫
作法,保留作圖痕跡,用2B鉛筆加粗加黑).并直接寫出此時OE=;
②如圖2,若點(diǎn)P為BC邊的中點(diǎn),連接CE,則CE與AP有何位置關(guān)系?請說明理由;
(2)點(diǎn)Q為射線DC上的一個動點(diǎn),將AOQ沿AQ翻折,點(diǎn)D恰好落在直線BQ上的點(diǎn)
D'處,則;
22.在數(shù)學(xué)的學(xué)習(xí)中,有很多典型的基本圖形.
(1)如圖①,ABC中,=90°,AB=AC,直線/經(jīng)過點(diǎn)A,80,直線/,
CE上直線/,垂足分別為。、E.試說明ABD^CAE;
(2)如圖②,A3C中,ZBAC=90°,A8=AC,點(diǎn)。、A、E在同一條直線
上,BD1DF,A£)=3,BD=4.則菱形AEFC面積為.
(3)如圖③,分別以ArABC的直角邊AC、AB向外作正方形ACOE和正方形
ABFG,連接EG,A"是A8C的高,延長“A交EG于點(diǎn)/,若AB=6,
AC=8,求A/的長度.
23.在ABC。中,以AD為邊在A8CO內(nèi)作等邊AADE,連接3E.
(1)如圖1,若點(diǎn)E在對角線3。上,過點(diǎn)A作A"_L8。于點(diǎn)〃,S.ZDAB=75°,
AB=R,求的長度;
(2)如圖2,若點(diǎn)尸是3E的中點(diǎn),且過點(diǎn)E作MNCF,分別交AB,
CD于點(diǎn)、M,N,在£)C上取。G=CN,連接CE,EG.求證:
①ACEN/M)EG;
②AENG是等邊三角形.
DG
H
24.如圖1,在正方形ABC。和正方形8EFG中,點(diǎn)A,8,E在同一條直線上,P是線段
。廠的中點(diǎn),連接PG,PC.
(1)求證:PGLPC,PG=PC.
簡析:由P是線段的中點(diǎn),DC//CF,不妨延長GP交。C于點(diǎn)M,從而構(gòu)造出一
對全等的三角形,即三.由全等三角形的性質(zhì),易證VCMG是
三角形,進(jìn)而得出結(jié)論;
(2)如圖2,將原問題中的正方形A8CO和正方形BEFG換成菱形ABC。和菱形
PC
BEFG,且NABC=NBEE=60。,探究PG與PC的位置關(guān)系及一的值,寫出你的猜
PC
想并加以證明:
(3)當(dāng)AB=6,8E=2時,菱形ABC。和菱形BEFG的頂點(diǎn)都按逆時針排列,且
ZABC=Z.BEF=60°.若點(diǎn)A、B、E在一條直線上,如圖2,則CP=;若點(diǎn)
A、B、G在一條直線上,如圖3,則CP=.
D
25.如圖,在平面直角坐標(biāo)系中,已知口0ABe的頂點(diǎn)A(10,0)、C(2,4),點(diǎn)。是
OA的中點(diǎn),點(diǎn)P在BC上由點(diǎn)B向點(diǎn)C運(yùn)動.
(1)求點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P運(yùn)動速度為每秒2個單位長度,點(diǎn)P運(yùn)動的時間為t秒,當(dāng)四邊形PCDA是平
行四邊形時,求t的值;
(3)當(dāng)aODP是等腰三角形時,直接寫出點(diǎn)P的坐標(biāo).
C<-PB
ODAx
26.已知四邊形ABCD是正方形,將線段CD繞點(diǎn)C逆時針旋轉(zhuǎn)。(0°<a<90°),得到
線段CE,聯(lián)結(jié)BE、CE、DE.過點(diǎn)B作BF_LDE交線段DE的延長線于F.
(1)如圖,當(dāng)BE=CE時,求旋轉(zhuǎn)角a的度數(shù);
(2)當(dāng)旋轉(zhuǎn)角a的大小發(fā)生變化時,NBE尸的度數(shù)是否發(fā)生變化?如果變化,請用含。的
代數(shù)式表示;如果不變,請求出的度數(shù);
(3)聯(lián)結(jié)AF,求證:DE=42AF-
27.已知:如下圖,A5c和BCD中,ZBAC=ZBDC=90''^E為8C的中點(diǎn),連
接。E、AE.若。CAE,在。C上取一點(diǎn)尸,使得。尸=?!?連接EF交AO于。.
(1)求證:EFIDA.
(2)若BC=4,AD=2瓜求EF的長.
H
28.已知正方形ABC。與正方形(點(diǎn)C、E、F、G按順時針排列),是的中點(diǎn),連接,.
(1)如圖1,點(diǎn)E在上,點(diǎn)在的延長線上,
求證:DM=ME,DMl.ME
簡析:由是的中點(diǎn),AD〃EF,不妨延長EM交AD于點(diǎn)N,從而構(gòu)造出一對全等的三角
形,即嶺.由全等三角形性質(zhì),易證ADNE是三角形,進(jìn)而得出結(jié)論.
(2)如圖2,在0c的延長線上,點(diǎn)在上,(1)中結(jié)論是否成立?若成立,請證明你的結(jié)
論;若不成立,請說明理由.
(3)當(dāng)AB=5,CE=3時,正方形的頂點(diǎn)C、E、F、G按順時針排列.若點(diǎn)E在直線CD上,
則DM=;若點(diǎn)E在直線BC上,貝DM=.
29.如圖,在四邊形ABCD中,AD=BC,AD//BC,連接AC,點(diǎn)P、E分別在AB、CD
上,連接PE,PE與AC交于點(diǎn)F,連接PC,ND=NBAC,ZDAE=ZAEP.
(1)判斷四邊形PBCE的形狀,并說明理由;
(2)求證:CP=AE;
(3)當(dāng)P為A8的中點(diǎn)時,四邊形APCE是什么特殊四邊形?請說明理由.
30.如圖,ABC。的對角線4。,3£)相交于點(diǎn)0,/181.406=6?!?8。=10(7〃,
點(diǎn)P從點(diǎn)A出發(fā),沿AD方向以每秒1cm的速度向終點(diǎn)O運(yùn)動,連接P。,并延長交BC
于點(diǎn)。.設(shè)點(diǎn)P的運(yùn)動時間為/秒.
(1)求BQ的長(用含/的代數(shù)式表示);
(2)當(dāng)四邊形A5QP是平行四邊形時,求f的值;
32
(3)當(dāng)f=g時,點(diǎn)。是否在線段AP的垂直平分線上?請說明理由.
【參考答案】***試卷處理標(biāo)記,請不要刪除
一、選擇題
1.C
解析:C
【分析】
分別以3為底和以3為腰構(gòu)造等腰三角形即可.注意等腰三角形的大小不同.
【詳解】
①以A為圓心,以3為半徑作弧,交AD、AB兩點(diǎn),連接即可,此時三角形為腰為3的等
腰三角形:
②連接AC,在AC上,以A為端點(diǎn),截取1.5個單位,過這個點(diǎn)作AC的垂線,交AD、
AB兩點(diǎn),連接即可
理由如下:;四邊形ABCD為正方形,
AZBAC=ZDAC=45°,
VEF±AC
/.△AEII與△AHF為等腰直角三角形
;.EF=EH+FH=AH+AH=3.且AE=AF=J^4”
故4AEF為底為3的等腰三角形;
③以A為端點(diǎn)在AB上截取3個單位,以截取的點(diǎn)為圓心,以3個單位為半徑畫弧,交BC
一個點(diǎn),連接即可,此時三角形為腰為3的等腰三角形;
④連接AC,在AC上,以C為端點(diǎn),截取1.5個單位,過這個點(diǎn)作AC的垂線,交BC、
DC兩點(diǎn),然后連接A與這兩個點(diǎn)即可;
理由如下:與②同理可證EF=3,且EC=FC,
在aDEC和4DFC中,
VAC=AC,ZACE=ZACF,EC=FC
AADEC^ADFC
,AE=AF,
故4AEF為底為3的等腰三角形.
⑤以A為端點(diǎn)在AB上截取3個單位,再作著個線段的垂直平分線交CD一點(diǎn),連接即可
根據(jù)垂直平分線上的點(diǎn)到線段兩端距離相等,三角形為底為3的等腰三角形.
故滿足條件的所有圖形如圖所示:
故選C.
【點(diǎn)睛】
本題考查作圖——應(yīng)用與設(shè)計(jì)作圖,等腰三角形的性質(zhì)與判定,勾股定理,正方形的性質(zhì).明
確等腰三角形的性質(zhì)是解答本題的關(guān)鍵.
2.A
解析:A
【分析】
由AAS證明aABG且Z\DEG,得出AG=DG,證出0G是4ACD的中位線,得出
OG=-CD=-AB,①正確;先證明四邊形ABDE是平行四邊形,證出aABD、ZiBCD是等邊
22
三角形,得出AB=BD=AD,因此OD=AG,得出四邊形ABDE是菱形,④正確;由菱形的性
質(zhì)得得出△ABG^ZXBDG名ZXDEG,由SAS證明△ABGgz^DCO,得出
△ABO^ABCO^ACDO^AAOD^AABG^ABDG^ADEG,得出②不正確;證出0G是
△ABD的中位線,得出OG〃AB,OG=-AB,得出△GODSAABD,AABF^AOGF,由相
2
似二角形的性質(zhì)和面積關(guān)系得出S㈣迪彩ODGF=SAABF;③不正確;即可得出結(jié)果.
【詳解】
?.?四邊形A8CD是菱形,
:.AB^BC=CD=DA,AB//CD,OA=OC,OB=OD,AC±BD,
:./BAG=ZEDG,^ABO^ABCO^ACDO^AAOD,
,:CD=DE,
:.AB=DE,
在ZiABG和aEG中,
ZBAG=ZEDG
<ZAGB=ZDGE,
AB=DE
.?.△ABG絲ZWEG(AAS),
;.AG=DG,
,0G是ZiACD的中位線,
1I
AOG=-CD^-AB,
22
.?.①正確;
".,AB//CE,AB=DE,
二四邊形A8DE是平行四邊形,
':ZBCD=ZBAD=60°,
.?.△ABD、△SCO是等邊三角形,
:.AB=BD=AD,ZODC=60°,
:.OD=AG,四邊形A8DE是菱形,
④正確;
.'.AD1BE,
由菱形的性質(zhì)得:AABG芻叢BDGWADEG,
在AABG和△DC。中,
OD=AG
<ZODC=ZBAG=60°,
AB=DC
.?.△A8G絲△DC。(SAS),
"8。絲ZXBC。出△CDO0"。。絲"8G絲ZXBDG也△DEG,
②不正確:
VOB=OD,AG=DG,
;.OG是MBD的中位線,
1
AOG//AB,OG=-AB,
2
.?.△GODSAABD,AABFSAOGF,
.?.△GOD的面積=L△AB。的面積,AABF的面積=AOGF的面積的4倍,AF-.OF=2:1,
4
.?.△AFG的面積=4OGF的面積的2倍,
又?..△GOD的面積=AAOG的面積=48。6的面積,
?'.S四邊彩OOGF=5AA8F;
③不正確;
正確的是①④.
故選A.
【點(diǎn)睛】
本題考查菱形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),熟練掌握性
質(zhì),能通過性質(zhì)推理出圖中線段、角之間的關(guān)系是解題關(guān)鍵.
3.D
解析:D
【解析】
【分析】
連接DP,當(dāng)點(diǎn)D,P,E在同一直線上時,由△PCFgZ\PCB可得DP=BP,BP+EP的最小值
為DE長,依據(jù)AADFgZXDCE,AF=DE,即可得到8P+EP最小值等于線段AF的長.
【詳解】
解:如圖,連接DP,
;PC=PC,ZPCD=ZPCB=45°
.?.△PCF^APCB
/.BP=DP
,BP+PE=DP+PE
當(dāng)點(diǎn)D,P,E在同一直線上時,BP+EP的最小值為DE長,
又:AB=CD,ZADF=ZECD,DF=EC,
.".△ADF^ADCE
,AF=DE,
/.BP+EP最小值等于線段AF的長,
故選:D.
【點(diǎn)睛】
本題考查的是軸對稱,最短路線問題,根據(jù)題意作出A關(guān)于BD的對稱點(diǎn)C是解答此題的
關(guān)鍵.
4.D
解析:D
【分析】
先根據(jù)全等三角形進(jìn)行證明,即可判斷①和②,然后作輔助線,推出。D=OF,得出四邊形
BEDF是平行四邊形,求出BM=DM即可判斷④和⑤,最后根據(jù)AE=CF,即可判斷⑥.
【詳解】
①;四邊形ABCD是平行四邊形,
;.AB〃DC,AB=DC,
二ZBAC=ZADC,
在aABE和4DFC中
AE=FC
<ABAC=AADC
AB=DC
AAABE^ADFC(SAS),
;.BE=DF,
故①正確.
②?.?△ABEgZ\DFC,
ZAEB=ZDFC,
ZBEF=ZDFE,
;.BE〃DF,
故②正確.
③根據(jù)已知的條件不能推AB=DE,故③錯誤.
④連接BD交AC于0,過D作DM_LAC于M,過B作BN_LAC于N,
,/四邊形ABCD是平行四邊形,
;.D0=B0,0A=0C,
VAE=CF,
;.0E=0F,
四邊形BEDF是平行四邊形,
故④正確.
⑤,.?BN_LAC,DM±AC,
NBN0=/DM0=90°,
在△BN0和中
ZBN0=ZDM0
,ZB0N=ZD0M
OB=OD
AABNO^ADMO(AAS)
.\BN=DM
VS△AAJD?E=-2xAExDM,S△AJARBE=-2xAExBN
...^sAADE=^sAABE,
故⑤正確.
@VAE=CF,
.?.AE+EF=CF+EF,
;.AF=CE,
故⑥正確.
故答案是D.
【點(diǎn)睛】
本題主要考查了全等三角形的判定和平行四邊形的判定以及性質(zhì),熟練掌握相關(guān)的性質(zhì)是
解題的關(guān)鍵.
5.C
解析:C
【分析】
如圖,作BM_LEC于M.證明△BEAgZSBEM(AAS),ABMH^AGCH(AAS),利用全等
三角形的性質(zhì)即可一一判斷.
【詳解】
解:如圖,作BM1EC于M.
VCB=CE,
.??ZCBE=ZCEB,
;AD〃BC,
AZAEB=ZCBE,
.".ZAEB=ZMEB,
VZA=ZBME=90°,BE=BE,
.".△BEA^ABEM(AAS),
;.AE=EM,AB=BM.
VZBMH=ZGCH=90°,ZBHM=ZGHC,BM=AB=CG,
.,?△BMH^AGCH(AAS),
,MH=CH,BH=HG,
;.EH=EM+MH=AE+CH,故??正確,
VZAEB+ZABE=90°,
.?.2ZAEB+2ZABE=180°,
,.,ZDEC+ZAEC=180",ZAEC=2ZAEB,
AZDEC+2ZAEB=180°,
AZDEC=2ZABE,故②正確,
VFH平分NEFG,
,NEFH=45°,
:NFEH=90°,
;.AB=EF=EH,
VEH>HM=CH,
ACH<AB,故④錯誤.
故選:C.
【點(diǎn)睛】
本題考查性質(zhì)的性質(zhì),矩形的性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會
添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.
6.C
解析:c
【分析】
根據(jù)平行四邊形的性質(zhì)得到四個平行四邊形,且SAAEP=SAAGP,SAPHC=S/\PFC,SAABC=S,^ADC>
利用面積比較的關(guān)系即可求出答案.
【詳解】
由題意知:四邊形BHPE、四邊形AEPG、四邊形HCFP、四邊形GPFD均為平行四邊形,
==
SAAEPSAAGP>SAPHC-SAPFC>SAABCSAADC>
又SAABC-SAAEP+S四邊彩BHPE+SAPHC-SAAPC①,
SAADC=SAAGP+S四邊/GPFD+SAPFC+SAAPC?,
②-①得,0=SntllKBHPE-SW??GPFD+2S/\APC>
即2SAAPC=6-4=2,
SAAPC=1.
故選:C.
【點(diǎn)睛】
此題考查平行四邊形的性質(zhì),平行四邊形一條對角線將平行四邊形的面積平分.
7.B
解析:B
【分析】
①由四邊形ABCD是正方形,可得NGAD=/ADO=45。,又由折疊的性質(zhì),可求得NADG
的度數(shù),從而求得/AGD;
②證△AEGWZ\FEG得AG=FG,由FG>OG即可得;
③先計(jì)算/AGE=NGAD+NADG=67.5。,ZAED=ZAGD-ZEAG=67.5°,從而得至Ij/AGE=
ZAED,易得AE=AG,由AE=FE、AG=FG即可得證;
④設(shè)OF=a,先求得NEFG=45°,易得/GFO=45°,在RtZ\OFG中,GF=J^OF=&a,
從而可證得BF=EF=GF=72OF;
2
⑤由SAOGF=1求出a,再表示出BE及AE的長,利用正方形的面積公式可得出結(jié)論.
【詳解】
解::四邊形ABCD是正方形,
/EAG=NGAD=/ADO=45°,ZAOB=90°,
由折疊的性質(zhì)可得:ZADG=-ZADO=22.5°,
2
ZAGD=1800-ZGAD-ZADG=112.5°,
故①錯誤;
由折疊的性質(zhì)可得:AE=EF,ZAEG=ZFEG,
AE=FE
在4AEG和AFEG中,<Z.AEG=ZFEG,
EG=EG
.".△AEG^AFEG(SAS),
;.AG=FG,
:在RtZ^GOF中,AG=FG>GO,
??SAAGO>SAOGD>故②錯誤;
,/ZAGE=ZGAD+ZADG=67.5°,ZAED=ZAGD-ZEAG=67.5°,
.".ZAGE=ZAED,
,AE=AG,
又:AE=FE,AG=FG,
;.AE=EF=GF=AG,
四邊形AEFG是菱形,故③正確;
設(shè)OF=o,
VAAEG^AFEG,
AZEFG=ZEAG=45°,
又,.,NEFO=90°,
.,?ZGFO=45°,
.?.在Rt/XOFG中,GF=夜。F=J^a,
?.?/EFO=90。,ZEBF=45°,
...在Rt^EBF中,BF=EF=GF=72a>即BF=J^OF,故④正確;
,*,SAOGF=1?
12口n12
??一OF=1,即一o—1,
22
貝!la2=2,
;BF=EF=&a,且NBFE=90°,
ABE=2a,
又?.?AE=EF=J^a,
AB=AE+BE=y/2a+2a=(2+五)a,
則正方形ABCD的面積是(2+血尸。2=(6+4夜)x2=12+80,
故⑤正確;
故選:B.
【點(diǎn)睛】
本題考查了四邊形的綜合,熟練掌握正方形的性質(zhì)、折疊的性質(zhì)、等腰直角三角形的性質(zhì)
以及全等三角形、菱形的判定與性質(zhì)等知識是解題的關(guān)鍵.
8.B
解析:B
【分析】
連接BD,,過D,作MN_LAB,交AB于點(diǎn)M,CD于點(diǎn)N,作D,P_LBC交BC于點(diǎn)P,先
利用勾股定理求出MD\再分兩種情況利用勾股定理求出DE.
【詳解】
如圖,連接過。作MNLAB,交AB于點(diǎn)M,CD于點(diǎn)N,作DTLBC交BC于點(diǎn)P
???點(diǎn)。的對應(yīng)點(diǎn)。'落在NA8C的角平分線上,
:.MD'=PD',
設(shè)MD'=x,^\PD'=BM=x,
:.AM=AB-BM=7-x,
又折疊圖形可得4O=AO'=5,
X2+(7-X)2=25,解得x=3或4,
即MD'=3或4.
在RtAEND中,設(shè)ED'=a,
①當(dāng)MD'=3時/M=7-3=4Q'N=5-3=2,EN=4-a,
a2=22+(4-a)2,
解得a=—,ERDE--,
22
②當(dāng)MD'=4時,AM=7-4=3,£W=5-4=1,EN=3-a,
.?./=/+(3-a)2,
解得■,即DE=".
33
故選B.
【點(diǎn)睛】
本題考查翻折變換(折疊問題),矩形的性質(zhì),角平分線的性質(zhì),勾股定理與折疊問題.解
決本題的關(guān)鍵是依據(jù)題意分別表示Rt^AMD'和RtAEND的三邊,利用勾股定理解直角三
角形.
9.D
解析:D
【分析】
求得/ADB=90°,即AD_LBD,即可得至ljSoABCD=AD?BD;依據(jù)/CDE=60°,ZBDE=
30°,可得NCDB=/BDE,進(jìn)而得出DB平分/CDE;依據(jù)RtABCD中,斜邊上的中線DE=
斜邊BC的一半,即可得至l」AD=BC=2DE,進(jìn)而得到AB=DE;依據(jù)OE是中位線,即可得
到OE〃CD,因?yàn)閮善叫芯€間的距離相等,進(jìn)而得到SACDE=SA"D,再根據(jù)0C是△BCD的
中線,可得5△BOC—$△COD,即可得到SACDE=SABOC.
【詳解】
VZBCD=60°,四邊形ABCD是平行四邊形,
AZADC=180°—ZBCD=120°,BC//AD,BC=AD,
VDE平分NADC,
ZCDE=ZCED=60°=ZBCD,
/.△CDE是等邊三角形,
.".CE=CD=AD=BC,
;.E是BC的中點(diǎn),
ADE=BE,
/BDE=ZCED=30°,
.,?ZCDB=90°,即CD_LBD,
,SSBCD=CD?BD=AB?BD,故①正確;
VZCDE=60°,ZBDE=30",
.,?ZADB=30°=ZBDE,
;.DB平分NCDE,故②正確;
「△CDE是等邊三角形,
;.DE=CD=AB,故③正確;
?..。是BD的中點(diǎn),E是BC的中點(diǎn),
AOE是ACBD的中位線,
?.OE〃CD,??SAOCD-SACDE>
VOC是小BCD的中線,
?'?SABOC=SACOD,
SACDE=SABOC,故正確,
故選D.
【點(diǎn)睛】
本題考查了平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線、平行線間的距
離相等、直角三角形斜邊上的中線等于斜邊的一半等,綜合性較強(qiáng),熟練掌握和靈活運(yùn)用
相關(guān)性質(zhì)與定理是解題的關(guān)鍵.
10.D
解析:D
【分析】
由勾股定理可求BE的長,由折疊的性質(zhì)可得CE=EF=2,BE1CF,FH=CH,由面積法可求
CH=t5,由勾股定理可求EH的長,由三角形中位線定理可求DF=2EH=S5.
55
【詳解】
解:如圖,連接CF,交BE于H,
D
1
5%-------------nc
;在正方形ABCD中,AB=4,E是CD的中點(diǎn),
ABC=CD=4,CE=DE=2,ZBCD=90°,
BE=dBC?+CE?=J16+4=25/5,
:將"CE沿BE翻折至ABFE,
???CE=EF=2,BE1CF,FH=CH,
11
VSABCE=-xBExCH=—xBCxCE,
.“46
??L.II-----,
5
???EH=^CE1-CH2=J4T=乎,
:CE=DE,FH=CH,
;.DF=2EH=-,
5
故選:D.
【點(diǎn)睛】
本題考查了翻折變換,正方形的性質(zhì),全等三角形的判定與性質(zhì),掌握折疊的性質(zhì)是本題
的關(guān)鍵.
二、填空題
11.2亞
【解析】
分析:過。點(diǎn)作OELCA于E,OFJ_BC于F,連接CO,如圖,易得四邊形OECF為矩形,
由AAOP為等腰直角三角形得到OA=OP,/AOP=90。,則可證明△OAEgZXOPF,所以
AE=PF,OE=OF,根據(jù)角平分線的性質(zhì)定理的逆定理得到CO平分NACP,從而可判斷當(dāng)P
從點(diǎn)D出發(fā)運(yùn)動至點(diǎn)B停止時,點(diǎn)。的運(yùn)動路徑為一條線段,接著證明
CE=g(AC+CP),然后分別計(jì)算P點(diǎn)在D點(diǎn)和B點(diǎn)時0C的長,從而計(jì)算它們的差即可得
到P從點(diǎn)D出發(fā)運(yùn)動至點(diǎn)B停止時,點(diǎn)。的運(yùn)動路徑長.
詳解:過。點(diǎn)作OE_LCA于E,OF_LBC于F,連接CO,如圖,
D
???△AOP為等腰直角三角形,
AOA=OP,ZAOP=90°,
易得四邊形OECF為矩形,
ZEOF=90°,CE=CF,
.\ZAOE=ZPOF,
.?.△OAE^AOPF,
;.AE=PF,OE=OF,
ACO平分NACP,
當(dāng)P從點(diǎn)D出發(fā)運(yùn)動至點(diǎn)B停止時,點(diǎn)。的運(yùn)動路徑為一條線段,
:AE=PF,
即AC-CE=CF-CP,
而CE=CF,
ACE=—(AC+CP),
2
.,.OC=V2(AC+CP),
當(dāng)AC=2,CP=CD=1時,0C=—x(2+1)=2^1,
22
當(dāng)AC=2,CP=CB=5時,0C=立x(2+5)=2^1,
22
當(dāng)P從點(diǎn)D出發(fā)運(yùn)動至點(diǎn)B停止時,點(diǎn)。的運(yùn)動路徑長=述-逑=2正.
22
故答案為2夜.
點(diǎn)睛:本題考查了軌跡:靈活運(yùn)用幾何性質(zhì)確定圖形運(yùn)動過程中不變的幾何量,從而判定
軌跡的幾何特征,然后進(jìn)行幾何計(jì)算.也考查了全等三角形的判定與性質(zhì).
12.8
【分析】
通過作輔助線使得aCAO附△GB。,證明ACOG為等腰直角三角形,利用勾股定理求出CG
后,即可求出BC的長.
【詳解】
AD
如圖,延長CB到點(diǎn)G,使BG=AC.
?根據(jù)題意,四邊形ABED為正方形,
Z4=Z5=45°,ZEBA=90°,
.".Zl+Z2=90°
又?.?三角形BCA為直角三角形,AB為斜邊,
Z2+Z3=90°
.,.Z1=Z3
,N1+N5=N3+N4,故NCAO=NGBO,
在△CAO和△GBO中,
CA=GB
<ZCAO=NGBO
AO=BO
故△CAOdGBO,
.*.CO=GO=6收,Z7=Z6,
VZ7+Z8=90",
N6+/8=90°,
三角形COG為等腰直角三角形,
CG=CB+BG,
CB=CG—BG=12—4=8,
故答案為8.
【點(diǎn)睛】
本題主要考查正方形的性質(zhì),等腰三角形的判定和性質(zhì),勾股定理,全等三角形的判定和
性質(zhì),根據(jù)題意建立正確的輔助線以及掌握正方形的性質(zhì),等腰三角形的判定和性質(zhì),勾
股定理,全等三角形的判定和性質(zhì)是解答本題的關(guān)鍵.
13.①②③④
【分析】
①根據(jù)角平分線的定義可得NBAE=NDAE=45°,可得出△ABE是等腰直角三角形,根據(jù)等
腰直角三角形的性質(zhì)可得AE=&AB,從而得到然后利用“角角邊”證明AABE
和△AMD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求
出/AOE=NAED=67.5°,根據(jù)平角等于180°求出NCED=67.5°,從而判斷出①正確;
②求出NAHB=67.5°,NDHO=NODH=22.5°,然后根據(jù)等角對等邊可得。E=OD=OH,判斷
出②正確;
③求出NE8H=/OHD=22.5°,ZAEB=ZHDF=45Q,然后利用“角邊角”證明△8EH和
△HDF全等,根據(jù)全等三角形對應(yīng)邊相等可得8H=HF,判斷出③正確;
④根據(jù)全等三角形對應(yīng)邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-
(CD-DF)=2HE,判斷出④正確;
⑤判斷出△AB”不是等邊三角形,從而得到ABW8H,即得到⑤錯誤.
【詳解】
:在矩形ABC。中,AE平分/BAD,:.ZBAE=ZDAE^45°,,/VIBE是等腰直角三角形,
:.AE=y/2AB.
,:AD=eAB,:.AE=AD.
NBAE=NDAE
在△A8E和△AH。中,V?ZABE=ZAHD=90°,A/\ABE^/\AHD(AAS),
AE=AD
:.BE=DH,:.AB=BE=AH=HD,:.ZADE=ZAED^—(180°-45°)=67.5°,
2
/CED=180°-45°-67.5°=67.5°,AZAED=ZCED,故①正確;
VZAHB=(180°-45°)=67.5°,/OHE=NAHB(對頂角相等),
:.NOHE=NAED,:.OE=OH.
":ZDOH^O0-67.5°=22.5°,/ODH=67.5°-45°=22.5°,:.NDOH=NODH,
:.OH=OD,:.OE=OD=OH,故②正確;
;NEBH=90°-67.50=22.5°,:.ZEBH=ZOHD.
NEBH=NOHD
在△BEH和△HDF中,,/<BE=DH,.'./\BEH^/\HDF(ASA),:.BH=HF,
NAEB=/HDF
HE=DF,故③正確;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,:.BC-CF=(.CD+HE)-CCD-
HE)=2HE,所以④正確;
':AB^AH,NBAE=45°,,ZVIBH不是等邊三角形,:.ABWBH,.?.即A8WHF,故⑤錯
誤;
綜上所述:結(jié)論正確的是①②③④.
故答案為①②③④.
【點(diǎn)睛】
本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定
與性質(zhì),熟記各性質(zhì)并仔細(xì)分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角
形全等的條件或判斷出等腰三角形是解題的關(guān)鍵,也是本題的難點(diǎn).
14.①②④⑤
【分析】
根據(jù)NB=90°,AB=BE,MBE繞點(diǎn)A逆時針旋轉(zhuǎn)45°,得到AAHD,可得ZkABE=AAHD,并且
△ABE和AAHD都是等腰直角三角形,可證AD〃BC,根據(jù)DC_LBC,可得NHDE=NCDE,根
據(jù)三角形的內(nèi)角和可得NHDE=NCDE,即DE平分/HDC,所以①正確;
利用NDAB=NABC=NBCD=90。,得到四邊形ABCD是矩形,有NADC=90。,ZHDC=45°,由
①有DE平分/HDC,得/HDO=22.5°,可得/AHB=67.5°,ZDHO=22.5°,可證OD=OH,
利用AE=AD易證/OHE=NHEO=67.5°,則有OE=OH,OD=OE,所以②正確;
利用AAS證明ADHEWADCE,則有DH=DC,ZHDE=ZCDE=22.5°,易的/DHF=22.5°,
ZDFH=112.5°,則ADHF不是直角三角形,并DHHHF,即有:CDwHF,所以③錯誤;
根據(jù)4ABE是等腰直角三角形,川,正,是BC的中點(diǎn),H是BF的中點(diǎn),得到2JH=CF,
2JC=BC,JC=JE+CE,易證BC-CF=2CE,所以④正確;
過H作HJ_LBC于J,并延長HJ交AD于點(diǎn)I,得L)_LAD,I是AD的中點(diǎn),J是BC的中點(diǎn),
H是BF的中點(diǎn),所以⑤正確;
【詳解】
?.,R3ABE中,ZB=90°,AB=BE,
NBAE=NBEA=45°,
又?.?將4ABE繞點(diǎn)A逆時針旋轉(zhuǎn)45°,得到MHD,
.-.△ABESAAHD,并且AABE和AAHD都是等腰直角三角形,
/.ZEAD=45°,AE=AD,ZAHD=90",
/ADE=NAED,
,/BAD=NBAE+/EAD=45°+45°=90°,
.".AD//BC,
ZADE=ZDEC,
AZAED=ZDEC,
又:DCJ_BC,
AZDCE=ZDHE=90°
由三角形的內(nèi)角和可得NHDE=NCDE,
即:DE平分NHDC,所以①正確;
:/DAB=NABC=NBCD=90°,
...四邊形ABCD是矩形,
.".ZADC=90°,
;./HDC=45°,
由①有DE平分ZHDC,
11
/.ZHDO=—ZHDC=—x45°=22.5°,
22
VZBAE=45°,AB=AH,
AZOHE=ZAHB=;(180°-ZBAE)=;x(180°-45°)=67.5°,
AZDHO=ZDHE-ZFHE=ZDHE-ZAHB=90°-67.5°=22.5°
.".OD=OH,
在AAED中,AE=AD,
ZAED=;(180°-ZEAD)=gx(180°-45°)=67.5°,
...NOHE=NHEO=67.5°,
,OE=OH,
.\OD=OE,所以②正確;
在ADHE和ADCE中,
NDHE=NDCE
<ZHDE=NCDE,
DE=DE
.,.ADHE^ADCE(AAS),
;.DH=DC,ZHDE=ZCDE=—x45°=22.5°,
2
VOD=OH,
,/DHF=22.5°,
AZDFH=180o-ZHDF-ZDHF=180o-45<>-22.5,,=112.5°,
「?ZkDHF不是直角三角形,并DHwHF,
即有:CDHHF,所以③不正確;
如圖,過H作HJ_LBC于J,并延長HJ交AD于點(diǎn)I,
???△ABE是等腰直角三角形,JH1JE,
AJH=JE,
又〈J是BC的中點(diǎn),H是BF的中點(diǎn),
/.2JH=CF,2JC=BC,JC=JE+CE,
A2JC=2JE+2CE=2JH+2CE=CF+2CE=BC,
即有:BC-CF=2CE,所以④正確;
VAD//BC,
AIJ±AD,
又???△AHD是等腰直角三角形,
是AD的中點(diǎn),
:四邊形ABCD是矩形,HJXBC,
:.i是BC的中點(diǎn),
;.H是BF的中點(diǎn),所以⑤正確;
綜上所述,正確的有①②④⑤,
故答案為:①②④⑤.
【點(diǎn)睛】
本題考查了全等三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、矩形的性質(zhì)、角平分線的性質(zhì)以及等
腰直角三角形的判定與性質(zhì);證明三角形全等和等腰直角三角形是解決問題的關(guān)鍵.
15.①②④
【分析】
①根據(jù)平行四邊形的性質(zhì)和等腰三角形的性質(zhì)即可判斷;
②延長EF,交CD延長線于點(diǎn)M,首先根據(jù)平行四邊形的性質(zhì)證明,得
出FE=MF,ZAEF=ZM,進(jìn)而得出ZECD=ZAEC=90°,從而利用直角三角形斜
邊中線的性質(zhì)即可判斷;
③由/E=MF,得出SVEFC=SVCFM,從而可判斷正誤:
④設(shè)NFEC=X,利用三角形內(nèi)角和定理分別表示出/DFE和/AEF,從而判斷正誤.
【詳解】
①:點(diǎn)F是AD的中點(diǎn),
.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥商品物流員崗前技能評估考核試卷含答案
- 紫膠蒸發(fā)工安全教育模擬考核試卷含答案
- 焊材配拌粉工常識競賽考核試卷含答案
- 2024年涿鹿縣招教考試備考題庫附答案
- 2024年莎車縣事業(yè)單位聯(lián)考招聘考試真題匯編附答案
- 2024年金陵科技學(xué)院馬克思主義基本原理概論期末考試題附答案
- 2024年鄭州航空工業(yè)管理學(xué)院輔導(dǎo)員考試參考題庫附答案
- 2024年許昌市遴選公務(wù)員考試真題匯編附答案
- 旅游行業(yè)導(dǎo)游服務(wù)標(biāo)準(zhǔn)操作手冊(標(biāo)準(zhǔn)版)
- 2025年井研縣事業(yè)單位聯(lián)考招聘考試真題匯編附答案
- 2025成人腸造口護(hù)理指南課件
- 電焊工安全宣講課件
- 水泵基礎(chǔ)知識培訓(xùn)課件教學(xué)
- 內(nèi)鏡院感培訓(xùn)課件
- 2026中征(北京)征信有限責(zé)任公司招聘13人考試題庫附答案
- 期末重點(diǎn)易錯知識點(diǎn)復(fù)習(xí)(課件)-2025-2026學(xué)年一年級上冊數(shù)學(xué)北師大版
- 2026年楊凌職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫含答案詳解
- 2025云南昆明元朔建設(shè)發(fā)展有限公司第二批收費(fèi)員招聘9人筆試考試參考題庫及答案解析
- 國開本科《國際法》期末真題及答案2025年
- 2025年榆林神木市信息產(chǎn)業(yè)發(fā)展集團(tuán)招聘備考題庫(35人)及完整答案詳解1套
- 2025新疆能源(集團(tuán))有限責(zé)任公司共享中心招聘備考題庫(2人)帶答案詳解(完整版)
評論
0/150
提交評論