版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年上海市師大二附中高三第二次診斷性檢測數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.2.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.3.已知函數()的最小值為0,則()A. B. C. D.4.已知的內角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.5.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.6.設且,則下列不等式成立的是()A. B. C. D.7.若集合,,則下列結論正確的是()A. B. C. D.8.已知函數有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.9.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.1010.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種11.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.12.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為銳角,若,則的值為____________.14.將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落.小球在下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.15.設數列的前n項和為,且,若,則______________.16.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.18.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.19.(12分)已知函數,.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.20.(12分)已知函數.(1)解不等式;(2)若,,,求證:.21.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.22.(10分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大?。唬?)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.2、C【解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數性質的應用,涉及到函數的平移、函數的對稱性,考查學生數形結合、數學運算的能力,是一道中檔題.3、C【解析】
設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.4、B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據中線作出平行四邊形是關鍵,是中檔題.5、C【解析】
根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.6、A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.7、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.8、C【解析】
先求導得(),由于函數有兩個不同的極值點,,轉化為方程有兩個不相等的正實數根,根據,,,求出的取值范圍,而有解,通過分裂參數法和構造新函數,通過利用導數研究單調性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數有兩個不同的極值點,,所以方程有兩個不相等的正實數根,于是有解得.若不等式有解,所以因為.設,,故在上單調遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數研究函數單調性、最值來求參數取值范圍,以及運用分離參數法和構造函數法,還考查分析和計算能力,有一定的難度.9、C【解析】
取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點睛】此題考查三棱錐的外接球半徑與棱長的關系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.10、C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據分步計數原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.11、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.12、A【解析】
設坐標,根據向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數量積運算;關鍵是利用動點坐標表示出變量,根據平面向量數量積的坐標運算可整理得軌跡方程.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
∵為銳角,,∴,∴,,故.14、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時一直向左或者一直向右下落,小球將落入袋,所以有,則.故本題應填.15、9【解析】
用換中的n,得,作差可得,從而數列是等比數列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數列為首項為-3、公比為3的等比數列,所以.故答案為:9.【點睛】本題考查已知與的關系求數列通項的問題,要注意n的范圍,考查學生運算求解能力,是一道中檔題.16、【解析】
求解占圓柱形容器的的總容積的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng)和向量法的合理運用,屬于中檔題.18、(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進而證明線面平行;(2)取中點為,以為坐標原點建立直角坐標系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結,,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結,,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標系,如下圖所示:則,,,,,,,,設平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.19、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導數,判斷在區(qū)間上的單調性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數只需時,恒成立,設(),需,根據(1)中的結論先求出,再構造函數結合導數法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數,則,所以在區(qū)間上是增函數.又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調遞減,在區(qū)間上單調遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數,所以,故.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、函數的零點、極值最值、不等式的證明,分離參數是解題的關鍵,意在考查邏輯推理、數學計算能力,屬于較難題.20、(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號即可,由此證明出所證不等式成立.【詳解】(1).當時,由,解得,此時;當時,不成立;當時,由,解得,此時.綜上所述,不等式的解集為;(2)要證,即證,因為,,所以,,,.所以,.故所證不等式成立.【點睛】本題考查絕對值不等式的求解,同時也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.21、(1)證明見解析(2)【解析】
(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中共臨海市委宣傳部下屬事業(yè)單位公開選聘工作人員1人備考題庫附答案
- 2025年12月昆明五華保安服務有限公司招聘(1人)考試備考題庫附答案
- 2025年菏澤市第六人民醫(yī)院公開招聘合同制工作人員筆試(公共基礎知識)測試題附答案
- 2025年合肥市醫(yī)療器械檢驗檢測中心有限公司社會招聘18人模擬試卷附答案
- 2025廣東江門臺山市水步鎮(zhèn)荔枝塘村招聘后備干部1人備考題庫附答案
- 2025年鼓樓區(qū)鼓東街道營商環(huán)境辦(樓宇)公開招聘工作人員備考題庫附答案
- 2025廣東惠州市公安局惠城分局輔警招聘59人備考題庫(第六批)附答案
- 中冶交通2026屆校園招聘筆試備考題庫及答案解析
- 2026重慶萬州區(qū)長灘鎮(zhèn)非全日制公益性崗位工作人員招聘1人筆試備考題庫及答案解析
- 2026福建莆田市城廂區(qū)國信產業(yè)投資有限公司招聘5人筆試備考題庫及答案解析
- 2025年安吉縣輔警招聘考試真題匯編附答案
- 貨運代理公司操作總監(jiān)年度工作匯報
- 世說新語課件
- 物業(yè)管理條例實施細則全文
- 電化學儲能技術發(fā)展與多元應用
- 2026年安全員之C證(專職安全員)考試題庫500道及完整答案【奪冠系列】
- 掩體構筑與偽裝課件
- 2026年包頭鐵道職業(yè)技術學院單招職業(yè)技能考試題庫帶答案詳解
- GB/T 23446-2025噴涂聚脲防水涂料
- 2026年(馬年)學校慶元旦活動方案:駿馬踏春啟新程多彩活動慶元旦
- 消防箱生產工藝流程
評論
0/150
提交評論