版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第一章集合與常用邏輯用語第一節(jié)集合【課程標準】1.通過實例,了解集合的含義,理解元素與集合的屬于關系.2.針對具體問題,能在自然語言和圖形語言的基礎上,用符號語言刻畫集合.3.在具體情境中,了解全集與空集的含義.4.理解集合之間包含與相等的含義,能識別給定集合的子集.5.理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集.6.理解在給定集合中一個子集的補集的含義,能求給定子集的補集.7.能使用Venn圖表達集合的基本關系與基本運算,體會圖形對理解抽象概念的作用.知識梳理·思維激活【必備知識】精歸納1.集合與元素(1)集合中元素的三個特性:____________、____________、無序性.
(2)元素與集合的關系是__________或____________,用符號________或_______表示.
(3)集合的表示法:____________、____________、圖示法.
(4)常見數(shù)集的記法及其關系圖點睛元素的互異性,即集合中不能出現(xiàn)相同的元素,解含參數(shù)的集合問題要注意用此性質檢驗.記法自然數(shù)集記作:N正整數(shù)集記作:____________整數(shù)集記作:Z有理數(shù)集記作:Q實數(shù)集記作:R關系圖
確定性
互異性
屬于
不屬于
∈
?
列舉法
描述法
N*或N+
2.集合間的基本關系點睛0,{0},?,{?}之間的關系:?≠{?},?∈{?},??{?},0??,0?{?},0∈{0},??{0}.關系文字語言符號語言子集集合A中任意一個元素都是集合B中的元素(即若x∈A,則x∈B)___________真子集集合A是集合B的子集,且集合B中至少有一個元素不在集合A中___________相等集合A,B中的元素相同或集合A,B互為子集_____空集不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集?A?B或B?AA?B或B?AA=B3.集合的基本運算運算文字語言符號語言圖形語言并集由所有屬于集合A或屬于集合B的元素組成的集合A∪B={x|x∈A,或x∈B}交集由所有屬于集合A且屬于集合B的元素組成的集合A∩B={x|x∈A,且x∈B}補集對于一個集合A,由全集U中不屬于集合A的所有元素組成的集合UA={x|x∈U,且x?A}【常用結論】【基礎小題】固根基1.(忽視互異性)若a∈{1,3,a2},則a的可能取值有 (
)A.1,3 B.0,1 C.0,3 D.0,1,3【解析】集合元素要滿足互異性,a=0時,該集合為{1,3,0},符合;a=3時,該集合為{1,3,9},符合;其他均不符合.教材改編結論應用易錯易混62,3,41,5CC4.(結論2)已知集合A={1,3,a2},B={1,a+2},若A∩B=B,則實數(shù)a的取值為 (
)A.1 B.-1或2C.2 D.-1或1C5.(忽略空集)集合A={-1,2},B={x|ax-2=0},若B?A,則由實數(shù)a組成的集合為(
)A.{-2} B.{1}C.{-2,1} D.{-2,1,0}【解析】因為集合A={-1,2},B={x|ax-2=0},B?A,所以B=?或B={-1}或B={2},所以a=0,1,-2.所以由實數(shù)a組成的集合為{-2,1,0}.D6.(教材提升)設集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},則A∩B=
.
答案:{(2,-1)}【題型一】集合的基本概念[典例1](1)(2022·聊城模擬)已知集合A={0,1,2},B={ab|a∈A,b∈A},則集合B中元素個數(shù)為(
)A.2 B.3 C.4 D.5核心題型·分類突破C(2)(2022·南京模擬)設集合M={5,x2},N={5x,5}.若M=N,則實數(shù)x的值組成的集合為(
)A.{5} B.{1} C.{0,5} D.{0,1}【解析】因為集合M={5,x2},N={5x,5},M=N,所以x2=5x,x=0或5,所以x的值組成的集合為{0,5}.C(3)(多選題)已知集合A={x|x=3k+1,k∈Z},則下列表示正確的是 (
)A.-2∈A
B.2023∈AC.3k2+1?A D.-35?AAB
CD【方法提煉】——自主完善,老師指導求解與集合的基本概念有關問題的關鍵點(1)用描述法表示集合,首先要搞清楚集合中代表元素的含義,再看元素的限制條件,明白集合的類型,是數(shù)集、__________,還是其他類型的集合;
(2)含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足______________.
點集
互異性
【對點訓練】1.(2022·南通模擬)已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},則A中元素的個數(shù)為(
)A.9 B.10 C.12
D.13【解析】選由題意可知,集合A中的元素有(-2,0),(-1,-1),(-1,0),(-1,1),(0,-2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(2,0),共13個.D2.設集合A={x|3x-1<m},若1∈A且2?A,則實數(shù)m的取值范圍是 (
)A.(2,5) B.[2,5) C.(2,5] D.[2,5]【解析】因為集合A={x|3x-1<m},1∈A且2?A,所以3×1-1<m且3×2-1≥m,解得2<m≤5.C
D【加練備選】1.已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x=4k+1,k∈Z},且a∈P,b∈Q,則(
)A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不屬于P,Q,M中的任意一個B
3.已知集合A={a+2,(a+1)2,a2+3a+3},若1∈A,則2020a的值為
;若1?A,則a不可能取得的值為
.
【題型二】集合間的基本關系[典例2](1)設全集U=R,則集合M={0,1,2}和N={x|x·(x-2)·log2x=0}的關系可表示為(
)【解析】因為N={x|x·(x-2)·log2x=0}={1,2},M={0,1,2},所以N是M的真子集.AA(3)(2023·棗莊模擬)已知集合A={y|y=2cosx,x∈R},滿足B?A的集合B可以是(
)A.[-2,2] B.[-2,3]C.[-1,1] D.R【解析】A={y|y=2cosx,x∈R}=[-2,2],且B?A,結合選項知,C項符合題意.C(4)(2022·舟山模擬)若集合A={x|2a+1≤x≤3a-5},B={x|5≤x≤16},則能使A?B成立的所有a組成的集合為 (
)A.{a|2≤a≤7} B.{a|6≤a≤7}C.{a|a≤7} D.?C【方法提煉】——自主完善,老師指導1.判斷集合間關系的三種方法(1)列舉法:由題中條件表示集合元素,然后比較集合元素的異同,找出集合之間的關系.(2)特征分析法:從元素滿足的共同特征入手,結合______、配方等變形技巧,找出集合之間的關系.(3)數(shù)軸法:在同一個數(shù)軸上表示出兩個集合,比較______之間的大小關系,從而確定集合與集合之間的關系.通分端點2.根據(jù)兩集合的關系求參數(shù)的方法(1)若集合元素是一一列舉的,依據(jù)集合間的關系,轉化為解方程(組)求解,此時注意集合中元素的互異性.(2)若集合表示的是不等式的解集,常依據(jù)數(shù)軸轉化為不等式(組)求解,此時需注意端點值能否取到.提醒若有條件B?A,則應注意判斷是否需要分B=?和B≠?兩種情況進行討論.【對點訓練】1.設集合P={y|y=x2+1},M={x|y=x2+1},則集合M與集合P的關系是(
)A.M=P B.P∈MC.M?P D.P?M【解析】因為P={y|y=x2+1}={y|y≥1},M={x|y=x2+1}=R,因此P?M.D
CD
【加練備選】1.已知集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},則滿足條件A?C?B的集合C的個數(shù)為
.
答案:4【解析】由題意可得,A={1,2},B={1,2,3,4}.又因為A?C?B,所以C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},所以有4個.2.已知集合A={x|x2-2023x+2022<0},B={x|x<a},若A?B,則實數(shù)a的取值范圍是
.
答案:[2022,+∞)【解析】由x2-2023x+2022<0,解得1<x<2022,故A={x|1<x<2022}.又B={x|x<a},A?B,如圖所示,可得a≥2022.
DADBC角度3
根據(jù)集合的運算結果求參數(shù)[典例5](1)(2023·常德模擬)已知集合A={x∈Z|x2≤1},B={x|x2-mx+2=0},若A∩B={1},則A∪B= (
)A.{-1,0,1} B.{x|-1≤x≤1}C.{-1,0,1,2} D.{x|-1≤x≤2}【解析】集合A={x∈Z|x2≤1}={-1,0,1},B={x|x2-mx+2=0},A∩B={1},所以1∈B,所以1-m+2=0,解得m=3,所以B={x|x2-3x+2=0}={1,2},所以A∪B={-1,0,1,2}.C(2)(2022·龍巖模擬)已知集合A={x|x<a},B={x|1<x<2},且A∪(RB)=R,則實數(shù)a的取值范圍為 (
)A.{a|a≤2} B.{a|a<1}C.{a|a≥2} D.{a|a>2}【解析】因為B={x|1<x<2},所以
RB={x|x≤1或x≥2},又A={x|x<a},A∪(RB)=R,所以a≥2.C【方法提煉】——自主完善,老師指導解集合運算問題的兩種基本方法(1)若集合中的元素是連續(xù)的實數(shù),一般利用______解決,要注意端點值能否取到,一般可將端點值代入驗證.(2)根據(jù)題目特點,靈活運用_______圖求解.數(shù)軸VeNN【對點訓練】CCD【加練備選】1.(2021·新高考Ⅰ卷)設集合A={x|-2<x<4},B={2,3,4,5},則A∩B= (
)A.{2} B.{2,3}C.{3,4} D.{2,3,4}【解析】A∩B={x|-2<x<4}∩{2,3,4,5}={2,3}.B2.已知集合A={x|x2≥4},B={m}.若A∪B=A,則m的取值范圍是 (
)A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)【解析】因為A∪B=A,所以B?A,即m∈A,得m2≥4,解得m≥2或m≤-2.DD【備選題型】集合的新定義問題[典例]已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定義集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球人形機器人材料科學應用報告
- 餐廳服務意識培訓課件
- 餐廳擺設培訓課件
- 餐廳工安全教育培訓內(nèi)容課件
- 全員工貿(mào)企業(yè)安全生產(chǎn)責任制與事故報告考核(2024年1月)
- 鞭炮廠安全培訓職責課件
- 除顫儀操作培訓
- 除惡防爆安全課件
- 除塵班組安全培訓記錄課件
- 紡紗設備基礎知識
- 2023-2024學年北京市海淀區(qū)清華附中八年級(上)期末數(shù)學試卷(含解析)
- 臨終決策中的醫(yī)患共同決策模式
- 2026年包頭輕工職業(yè)技術學院高職單招職業(yè)適應性測試備考題庫及答案詳解
- 流感防治知識培訓
- 呼吸內(nèi)科進修匯報課件
- 康復治療進修匯報
- 牽引供電系統(tǒng)短路計算-三相對稱短路計算(高鐵牽引供電系統(tǒng))
- 離婚協(xié)議書模板(模板)(通用)
- (完整版)第一性原理
- 降低住院患者口服藥缺陷率教學課件
- 《質量管理與控制技術基礎》第一章 質量管理基礎知識
評論
0/150
提交評論