版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
115225中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2023年3月測(cè)試數(shù)學(xué)試卷A.B.C.D.10157.在矩形中,已知24,==E是的中點(diǎn),將1C,連接.當(dāng)二面角沿直線翻折成本試卷共150分,考試時(shí)間120分鐘。1??C的平面角的大小為1?外接85分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是球的表面積為符合題目要求的.A.B.?x21123(第7題圖)?4x+3,A=xx2B=yy=1.已知集合A,則C.D.3)()+)D.+)2,3C.A.B.12,a1A=x2x2logaxB=xy=x+?x,AB8.已知a0且3+z1+izz是實(shí)數(shù),則的虛部為2.設(shè)是純虛數(shù),若a則實(shí)數(shù)的取值范圍是A.3?B.1?C.1D.3111114()=3sinx+)?cosx+))fx()fx3.已知函數(shù)A.B.4“=?”的3111,1,1C.D.A.充分不必要條件B.必要不充分條件D.既不充分也不必要條件44C.充要條件45分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.(?)4.若圓xa2y3=+(?)20上有四個(gè)點(diǎn)到直線2x?y+1=0的距離為5a的取值范2ab0,滿足a+b=1,下列說(shuō)法正確的是9.設(shè)圍是121A.a(chǎn)b的最大值為B.+的最小值為83131722?,??,??,A.B.24ab22113nC.a(chǎn)2+b2的最小值為D.a(chǎn)2+b的最小值為123737?,C.D.2222aSa+a+a=S=2510.已知等差數(shù)列的前項(xiàng)和為,滿足,5,下列說(shuō)法正確的是nn123?++nn1n5.若7n+C1n17n1C是9的倍數(shù),則自然數(shù)為a=2n+3S=?B.nn2+10nA.C.nA4的倍數(shù)B.3的倍數(shù)C.奇數(shù)D.偶數(shù)110SS?的前10項(xiàng)和為的最大值為D.n5aa99nn16.現(xiàn)將0-9十個(gè)數(shù)字填入右方的金字塔中,要求每個(gè)數(shù)字都使用一的內(nèi)角,,C所對(duì)邊的長(zhǎng)分別為a,,c,已知b=c=6,的面積S滿足11.已知a(b+c2=(438Sa+)+2,點(diǎn)O為的外心,滿足AO=AB+AC,則下列結(jié)論正為bc字為d,則滿足abcd的填法的概率為確的是(第6題圖)21233(2)若二面角A??C的平面角的大小為,求直線與面所成角的正弦值.A.S=6B.=C.AO=D.=2?33x29y220.(12分)為提高學(xué)生的數(shù)學(xué)應(yīng)用能力和創(chuàng)造力,學(xué)校打算開(kāi)設(shè)“數(shù)學(xué)建?!边x修課,為了解學(xué)生對(duì)“數(shù)學(xué)建模”的興趣度是否與性別有關(guān),學(xué)校隨機(jī)抽取該校名高中學(xué)生進(jìn)行問(wèn)卷調(diào)查,其中認(rèn)為感興趣的人數(shù)占70%.()()+12=?2,則下Px,y,Qx,y+=1上兩個(gè)不同點(diǎn),且滿足xx91y212.已知是橢圓112244列說(shuō)法正確的是2x+3y?3+2x+3y?3A.B.的最大值為6+251122(12285%的把握認(rèn)為學(xué)生對(duì)“數(shù)學(xué)建模”選修課的興趣度與性別有關(guān)?2x+3y?3+2x+3y?3的最小值為3?511222105x?3y+5+x?3y+5C.D.的最大值為25+1122感興趣不感興趣合計(jì)x?3y+5+x?3y+51男生女生合計(jì)12的最小值為22?1225三、填空題:本題共4小題,每小題5分,共20分.30=8xN為圓x2+(y?4)=5M到y(tǒng)軸的213.已知點(diǎn)M為拋物線y2(243名進(jìn)行二次訪談,記選出高三女生的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.距離與點(diǎn)M到點(diǎn)的距離之和最小值為N.()fx()()+)fx在上單調(diào)遞增,則不等式hxx214知為R上的偶函數(shù),函數(shù)(?)nadbc2(?)2(?)?(+)2(+)1xf1x3xf3x0的解集為.=n=a+b+c+d.K2附:,其中(+)(+)(+)(+)abcdacbd154,5這六個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的六位數(shù),要求任意兩個(gè)偶數(shù)數(shù)字之間至少有一個(gè)奇()PK2k00.150.100.050.0255.0240.0106.6350.0057.8790.001數(shù)數(shù)字,則符合要求的六位數(shù)的個(gè)數(shù)有(?)+kxx3x(+)kxex16.若關(guān)于的不等式對(duì)任意的的最大值為.k02.0722.7063.84110.828四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.21.(12分)已知雙曲線C以2x(1)求雙曲線C5y0為漸近線,其上焦點(diǎn)F坐標(biāo)為0,3=()4中,1=,(n+9)(n+)2an1=(n+2)an.3.a(chǎn)17.(10分)在數(shù)列n9的方程;(1)求的通項(xiàng)公式;an,Q兩點(diǎn),y軸于點(diǎn)T(2l過(guò)F與雙曲線C交于的中垂線交52n+5?(2a的前n項(xiàng)和為Sn,證明:S.nn4nTF4是否為定值,若是,請(qǐng)求出定值,若不是,請(qǐng)說(shuō)明理由.,,CbA?a=c.PQ18.(12分)已知的內(nèi)角a,,c的對(duì)邊分別為,且x()=()22.(12分)設(shè)fxxR.(1)求角B;ex(212的角平分線交于點(diǎn)D,若=2的面積的最小值.()()fx的單調(diào)性,并求在fxx=(1(2處的切線方程;19.(12分)如圖所示,在三棱錐A中,滿足CD33,?==()()(+)x+)xfxkx1在上恒成立,求k的取值范圍.點(diǎn)M在CD上,且=,為邊長(zhǎng)為6的等邊三角形,E為的中點(diǎn),F(xiàn)為的三等分點(diǎn),且2=.;(1)求證:面(第19題圖)中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2023年3月測(cè)試數(shù)學(xué)參考答案85項(xiàng)是符合題目要求的.12345678ADBDCCAB45符合題目要求.全部選對(duì)的得5分,部分選對(duì)但不全的得2分,有錯(cuò)選的得0分.91012ACBCDABDAD三、填空題:本題共4小題,每小題5分,共20分.13.5?215.14.(??),116.1四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.172(+)3(1)n1a=n2a(+)nn(+)(+)n2an3n3an1=(+)n22(+)n12(+)1(+)n1=3(+)n3an2an即·····································································2分(+)n222n1(+)13()n+2a12111=n2是首項(xiàng)為,公比為的等比數(shù)列又,所以數(shù)列(+)112(+)33n1(+)n2n1n2(+)n1(+)==,則a··················································5分從而(+)n123nnn23(+)2n+1n+1nn1(+)(2)=···························································6分n23nn23+nn2312313nSnT=++++323n31323nn=++設(shè),則n322333兩式相減得:n1111?9323211n2=+n+1n=++?31323n+1313n11?n1211n+152n+5?=?=+1?················································9分363n1+62n1+52n+552n+5T=?S?·····················································10分從而,故nnn4n443418(1)由已知及正弦定理得:2sinBA?A=2sinC中,C=(A+B)=AB+AB又在·························2分2sinBA?A=2sinAB+2AB2sinAB=?A即1又A0,B=?········································································4分分20B,B=又,即角的大小為B··············································533123(2)acsinB=ac·····································································6分4BD是的角平分線,而S=S+S311ac=ABBDsin+BDsin422aca+c33=+=BD(ac),·················································8分即ac44=,=(+)2ac2ac,ac4ac,即···············································10分13a=c=4=acsinB16=43當(dāng)且僅當(dāng)時(shí)取等號(hào),則S24即的面積的最小值為43·······························································12分1912(1上取一點(diǎn),使得NBN=NE,連接,NM1BN=BD=1=,=23,,61BNAF12,==2NEFE則···························································································2分,,面面面CMND15=,·······························································4分,面,面面,面面,面面··························································5分D,⊥A??C(2)AEC=············································6分所以二面角的平面角為3⊥面又面面⊥面ABDAEC,過(guò)點(diǎn)C作⊥,則⊥面面面3則CHCEsin==CE323362(233?32=32,CH=32=·······························8分236即C到面的距離為2553566CD,M的距離為=······························9到面分662431cosCDB==計(jì)算EM:33353==3,在中,DM22532+32?EM321512=EM=···············································分3532256534451=EM與面所成角的正弦值為·········································12分342(其他方法酌情給分)20(1)列聯(lián)表如下:感興趣不感興趣合計(jì)16男生129459女生合計(jì)142130··········································2分3012549(?)2K2=0.40822.0721614219所以沒(méi)有85%的把握認(rèn)為學(xué)生對(duì)“數(shù)學(xué)建?!边x修課的興趣度與性別有關(guān)············5分(2)由題意可知X的取值可能為,,23C35935(=0)====PX則···········································································6分············································································7分············································································8分C14521021(=)=PX193C2493C155(=2)==3)=PX14C34931(=PX················································································9分21故X的分布列為X01235102151P42142151021514()=+++=EX0123···············································12分421421321(1)因?yàn)殡p曲線C以2x5y=0為漸近線()2x+5y2x?5y=?5y=·························1分4x22設(shè)雙曲線方程為,即y2x2?=1,0,即:??54??=9,?=9,即=·····················································3分分54y2x2所以雙曲線C的方程為:?=1···························································445(2)設(shè)直線l:y=+3Px,y,(),()Qx,y21122?2=205y4xy=+3化簡(jiǎn)得:5k(+)532?4x2=20)2?4x2+30+25=0···························································6分30kx+x=?122?4kx,x,則此方程的兩根為12xx=12k2?4(?4)9k2?5k2900k2100PQ=1+k2?=101+k25k2?4)25k2?45k2?4)2(+)20k24k2+4=101+k2=··············································8分5k2?4)25k?42kPQ中點(diǎn)M坐標(biāo)為?,·······················································9分k2?4k2?4121k15k中垂線方程為:y+=?x+5k2?45k?42?2727x=0,y=T令,2?45k24?5k2715k5k22+15?4TF=3+==則····························································分5k2?415k5k22+15?4TF3=········································································12分(+)PQ20k5k242?422ex?ex1?x()fx==0(12···································································1分()e
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利抽水施工方案(3篇)
- 景區(qū)門票價(jià)格調(diào)整制度
- 罕見(jiàn)腫瘤聯(lián)合治療的策略與選擇
- 2026四川路橋集團(tuán)公路隧道分公司面向社會(huì)招聘TBM施工專業(yè)人才20人備考題庫(kù)(含答案詳解)
- 2026京能集團(tuán)總部部門副職及所屬企業(yè)副總經(jīng)理招聘5人備考題庫(kù)及一套完整答案詳解
- 2026中國(guó)電科十五所秋季校園招聘?jìng)淇碱}庫(kù)及完整答案詳解一套
- 2026四川大學(xué)華西醫(yī)院基建運(yùn)行部技術(shù)工人招聘2人備考題庫(kù)有完整答案詳解
- 小型加工企業(yè)財(cái)務(wù)制度
- 佛教場(chǎng)所財(cái)務(wù)制度
- 校長(zhǎng)辦公室財(cái)務(wù)制度
- 神經(jīng)病學(xué)教學(xué)課件:阿爾茨海默病
- LY/T 1598-2011石膏刨花板
- GB/T 31588.1-2015色漆和清漆耐循環(huán)腐蝕環(huán)境的測(cè)定第1部分:濕(鹽霧)/干燥/濕氣
- GB/T 21268-2014非公路用旅游觀光車通用技術(shù)條件
- GB/T 1040.1-2018塑料拉伸性能的測(cè)定第1部分:總則
- GA/T 1495-2018道路交通安全設(shè)施基礎(chǔ)信息采集規(guī)范
- 《大數(shù)據(jù)管理》課程教學(xué)大綱
- 夜間綜合施工專項(xiàng)專題方案公路
- ★神東煤炭集團(tuán)xx煤礦礦井災(zāi)害預(yù)防與處理計(jì)劃
- Q∕GDW 11421-2020 電能表外置斷路器技術(shù)規(guī)范
- 液化氣站建設(shè)可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論