黑龍江省哈爾濱市道外區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第1頁
黑龍江省哈爾濱市道外區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第2頁
黑龍江省哈爾濱市道外區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第3頁
黑龍江省哈爾濱市道外區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第4頁
黑龍江省哈爾濱市道外區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市道外區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.某品牌的飲水機(jī)接通電源就進(jìn)入自動程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時(shí)間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘2.如圖,點(diǎn)A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點(diǎn)A表示的數(shù)是A. B. C. D.33.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點(diǎn)B的直線折疊這個(gè)三角形,使頂點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm4.我國古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.5.cos30°的相反數(shù)是()A. B. C. D.6.某校舉行“漢字聽寫比賽”,5個(gè)班級代表隊(duì)的正確答題數(shù)如圖.這5個(gè)正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,157.如圖是由四個(gè)相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.8.如圖,等邊△ABC的邊長為4,點(diǎn)D,E分別是BC,AC的中點(diǎn),動點(diǎn)M從點(diǎn)A向點(diǎn)B勻速運(yùn)動,同時(shí)動點(diǎn)N沿B﹣D﹣E勻速運(yùn)動,點(diǎn)M,N同時(shí)出發(fā)且運(yùn)動速度相同,點(diǎn)M到點(diǎn)B時(shí)兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)點(diǎn)M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.9.下列左圖表示一個(gè)由相同小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小立方塊的個(gè)數(shù),則該幾何體的主視圖為()A. B. C. D.10.已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對應(yīng)的函數(shù)值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示,一個(gè)寬為2cm的刻度尺在圓形光盤上移動,當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的半徑是____cm.12.二次根式中的字母a的取值范圍是_____.13.不透明袋子中裝有5個(gè)紅色球和3個(gè)藍(lán)色球,這些球除了顏色外沒有其他差別.從袋子中隨機(jī)摸出一個(gè)球,摸出藍(lán)色球的概率為_______.14.如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長之和為_______cm.15.如圖,等邊三角形ABC內(nèi)接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.16.在直角坐標(biāo)平面內(nèi)有一點(diǎn)A(3,4),點(diǎn)A與原點(diǎn)O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.17.如圖,某校根據(jù)學(xué)生上學(xué)方式的一次抽樣調(diào)查結(jié)果,繪制出一個(gè)未完成的扇形統(tǒng)計(jì)圖,若該校共有學(xué)生1500人,則據(jù)此估計(jì)步行的有_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是AB上一動點(diǎn)(不與點(diǎn)B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當(dāng)AP的值為時(shí),四邊形PBEC是矩形;②當(dāng)AP的值為時(shí),四邊形PBEC是菱形.19.(5分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點(diǎn)D作DF⊥BC交BC的延長線于點(diǎn)F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c220.(8分)某跳水隊(duì)為了解運(yùn)動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:本次接受調(diào)查的跳水運(yùn)動員人數(shù)為,圖①中m的值為;求統(tǒng)計(jì)的這組跳水運(yùn)動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).21.(10分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點(diǎn),過點(diǎn)D作⊙O的切線,分別交AC、AB的延長線于點(diǎn)E和點(diǎn)F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.22.(10分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點(diǎn)A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點(diǎn)D是直線AC上方的拋物線上的一點(diǎn),求△DCA面積的最大值;(3)P是拋物線上一動點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.23.(12分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點(diǎn)M在對稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請問是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.24.(14分)化簡:(x-1-)÷.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】

先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時(shí)間是:20-7=13,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.2、B【解析】

如果點(diǎn)A,B表示的數(shù)的絕對值相等,那么AB的中點(diǎn)即為坐標(biāo)原點(diǎn).【詳解】解:如圖,AB的中點(diǎn)即數(shù)軸的原點(diǎn)O.

根據(jù)數(shù)軸可以得到點(diǎn)A表示的數(shù)是.

故選:B.【點(diǎn)睛】此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點(diǎn)確定數(shù)軸的原點(diǎn)是解決本題的關(guān)鍵.3、A【解析】試題分析:由折疊的性質(zhì)知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質(zhì)知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點(diǎn)評:本題利用了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.4、B【解析】

設(shè)大馬有匹,小馬有匹,根據(jù)題意可得等量關(guān)系:大馬數(shù)+小馬數(shù)=100,大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程即可.【詳解】解:設(shè)大馬有匹,小馬有匹,由題意得:,故選:B.【點(diǎn)睛】本題主要考查的是由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.5、C【解析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個(gè)特殊角的三角函數(shù)值以及相反數(shù)的概念.6、D【解析】

將五個(gè)答題數(shù),從小打到排列,5個(gè)數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個(gè)答題數(shù)排序?yàn)椋?0,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點(diǎn)睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.7、A【解析】【分析】根據(jù)正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個(gè)數(shù)依次為2,1,如圖所示:故選A.【點(diǎn)睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.8、A【解析】

根據(jù)題意,將運(yùn)動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點(diǎn)D到AB距離為,當(dāng)0≤x≤2時(shí),y=;當(dāng)2≤x≤4時(shí),y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點(diǎn)睛】本題為動點(diǎn)問題的函數(shù)圖象,解答關(guān)鍵是找到動點(diǎn)到達(dá)臨界點(diǎn)前后的一般圖形,分類討論,求出函數(shù)關(guān)系式.9、B【解析】

由俯視圖所標(biāo)該位置上小立方塊的個(gè)數(shù)可知,左側(cè)一列有2層,右側(cè)一列有1層.【詳解】根據(jù)俯視圖中的每個(gè)數(shù)字是該位置小立方塊的個(gè)數(shù),得出主視圖有2列,從左到右的列數(shù)分別是2,1.故選B.【點(diǎn)睛】此題考查了三視圖判斷幾何體,用到的知識點(diǎn)是俯視圖、主視圖,關(guān)鍵是根據(jù)三種視圖之間的關(guān)系以及視圖和實(shí)物之間的關(guān)系.10、C【解析】

∵當(dāng)x<h時(shí),y隨x的增大而增大,當(dāng)x>h時(shí),y隨x的增大而減小,∴①若h<1≤x≤3,x=1時(shí),y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當(dāng)x=3時(shí),y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的增減性和最值分兩種情況討論是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、5【解析】

本題先根據(jù)垂徑定理構(gòu)造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【詳解】解:如圖,設(shè)圓心為O,弦為AB,切點(diǎn)為C.如圖所示.則AB=8cm,CD=2cm.

連接OC,交AB于D點(diǎn).連接OA.

∵尺的對邊平行,光盤與外邊緣相切,

∴OC⊥AB.

∴AD=4cm.

設(shè)半徑為Rcm,則R2=42+(R-2)2,

解得R=5,

∴該光盤的半徑是5cm.

故答案為5【點(diǎn)睛】此題考查了切線的性質(zhì)及垂徑定理,建立數(shù)學(xué)模型是關(guān)鍵.12、a≥﹣1.【解析】

根據(jù)二次根式的被開方數(shù)為非負(fù)數(shù),可以得出關(guān)于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點(diǎn)睛】熟練掌握二次根式被開方數(shù)為非負(fù)數(shù)是解答本題的關(guān)鍵.13、【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值即其發(fā)生的概率.詳解:由于共有8個(gè)球,其中籃球有5個(gè),則從袋子中摸出一個(gè)球,摸出藍(lán)球的概率是,故答案是.點(diǎn)睛:此題主要考查了概率的求法,如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、1.【解析】試題分析:∵將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD為等邊三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF與△BDF的周長之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案為1.考點(diǎn):旋轉(zhuǎn)的性質(zhì).15、【解析】

分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關(guān)鍵是求圓心角的度數(shù).本題考查組合圖形的求法.扇形面積公式等.詳解:連結(jié)OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點(diǎn)睛:本題考查了等邊三角形性質(zhì),扇形的面積,三角形的面積等知識點(diǎn)的應(yīng)用,關(guān)鍵是求出∠AOC的度數(shù),主要考查學(xué)生綜合運(yùn)用定理進(jìn)行推理和計(jì)算的能力.16、【解析】

根據(jù)勾股定理求出OA的長度,根據(jù)余弦等于鄰邊比斜邊求解即可.【詳解】∵點(diǎn)A坐標(biāo)為(3,4),∴OA==5,∴cosα=,故答案為【點(diǎn)睛】本題主要考查銳角三角函數(shù)的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數(shù)的概念是解題關(guān)鍵.17、1【解析】

∵騎車的學(xué)生所占的百分比是×100%=35%,∴步行的學(xué)生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學(xué)生1500人,則據(jù)此估計(jì)步行的有1500×40%=1(人),故答案為1.三、解答題(共7小題,滿分69分)18、證明見解析;(2)①9;②12.5.【解析】

(1)根據(jù)對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點(diǎn)D是BC的中點(diǎn),∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當(dāng)∠APC=90°時(shí),四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當(dāng)AP的值為9時(shí),四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設(shè)BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當(dāng)PC=PB時(shí),四邊形PBEC是菱形,此時(shí)點(diǎn)P為AB的中點(diǎn),所以AP=12.5,∴當(dāng)AP的值為12.5時(shí),四邊形PBEC是菱形.【點(diǎn)睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、矩形的判定,解題的關(guān)鍵是掌握特殊圖形的判定以及重要的性質(zhì).19、見解析.【解析】

首先連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【點(diǎn)睛】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關(guān)鍵.20、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運(yùn)動員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運(yùn)動員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計(jì)圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計(jì)圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關(guān)鍵.21、(1)見解析;(2)1【解析】

(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質(zhì)得OD⊥DF,則根據(jù)等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以O(shè)H=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點(diǎn),∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,∵D是弧BC的中點(diǎn),∴OD⊥BC,∴CH=BH,∴OH為△ABC的中位線,∴,∴HD=2.5-1.5=1,∵AB為⊙O的直徑,∴∠ACB=90°,∴四邊形DHCE為矩形,∴CE=DH=1.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡記作:見切點(diǎn),連半徑,見垂直.也考查了圓周角定理.22、(1)y=﹣x2+x﹣2;(2)當(dāng)t=2時(shí),△DAC面積最大為4;(3)符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A與B坐標(biāo)代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似,分當(dāng)1<m<4時(shí);當(dāng)m<1時(shí);當(dāng)m>4時(shí)三種情況求出點(diǎn)P坐標(biāo)即可.【詳解】(1)∵該拋物線過點(diǎn)A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設(shè)D點(diǎn)的橫坐標(biāo)為t(0<t<4),則D點(diǎn)的縱坐標(biāo)為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點(diǎn)的坐標(biāo)為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當(dāng)t=2時(shí),△DAC面積最大為4;(3)存在,如圖,設(shè)P點(diǎn)的橫坐標(biāo)為m,則P點(diǎn)的縱坐標(biāo)為﹣m2+m﹣2,當(dāng)1<m<4時(shí),AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當(dāng)==2時(shí),△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時(shí)P(2,1);②當(dāng)==時(shí),△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當(dāng)1<m<4時(shí),P(2,1);類似地可求出當(dāng)m>4時(shí),P(5,﹣2);當(dāng)m<1時(shí),P(﹣3,﹣14),綜上所述,符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點(diǎn)睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標(biāo)系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標(biāo),會對代數(shù)式進(jìn)行合理變形,解決相似三角形問題時(shí)要注意分類討論.23、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】

(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進(jìn)行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點(diǎn)的坐標(biāo),當(dāng)AF為邊時(shí),則有FM∥AN且FM=AN,則可求得M點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得M點(diǎn)坐標(biāo);當(dāng)AF為對角線時(shí),由A、F的坐標(biāo)可求得平行四邊形的對稱中心,可設(shè)出M點(diǎn)坐標(biāo),則可表示出N點(diǎn)坐標(biāo),再由N點(diǎn)在x軸上可得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)坐標(biāo).【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論