版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷
注意事項(xiàng)
1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.
2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.
3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.
4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他
答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.
5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1.如圖所示的幾何體是一個(gè)圓錐,下面有關(guān)它的三視圖的結(jié)論中,正確的是()
A.主視圖是中心對(duì)稱圖形
B.左視圖是中心對(duì)稱圖形
C.主視圖既是中心對(duì)稱圖形又是軸對(duì)稱圖形
D.俯視圖既是中心對(duì)稱圖形又是軸對(duì)稱圖形
2.邊長(zhǎng)相等的正三角形和正六邊形的面積之比為()
A.1:3B.2:3C.1:6D.1:76
3.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<JTT<b,則a+b的值為()
A.7B.8C.9D.10
4.如圖,平面直角坐標(biāo)中,點(diǎn)A(1,2),將AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90。,點(diǎn)O的對(duì)應(yīng)點(diǎn)B恰好落在雙曲線y=_(x>0)
18
5.在—4,-1,一W這四個(gè)數(shù)中,比-2小的數(shù)有()個(gè).
A.1B.2C.3D.4
6.用配方法解方程X2-4X+1=0,配方后所得的方程是()
A.(x-2)2=3B.(x+2)2=3C.(x-2)2=-3D.(x+2)2=-3
7.已知g-5=2a,代數(shù)式Q-2>+2(a+l)的值為()
A.-11B.-1C.1D.11
8.完全相同的6個(gè)小矩形如圖所示放置,形成了一個(gè)長(zhǎng)、寬分別為n、m的大矩形,則圖中陰影部分的周長(zhǎng)是()
2
9.如圖,在平面直角坐標(biāo)系中,矩形ABOC的兩邊在坐標(biāo)軸上,OB=1,點(diǎn)A在函數(shù)y=-—(x<0)的圖象上,
x
k
將此矩形向右平移3個(gè)單位長(zhǎng)度到A1BIO]G的位置,此時(shí)點(diǎn)A1在函數(shù)y=^(x>0)的圖象上,CQ]與此圖象交于
10.-0.2的相反數(shù)是()
A.0.2B.±0.2C.-0.2D.2
11.下面的統(tǒng)計(jì)圖反映了我市2011-2016年氣溫變化情況,下列說法不合理的是()
北京市2011-2016年,濕變化情況
A.2011-2014年最高溫度呈上升趨勢(shì)
B.2014年出現(xiàn)了這6年的最高溫度
C.2011-2015年的溫差成下降趨勢(shì)
D.2016年的溫差最大
12.下列四個(gè)幾何體中,主視圖與左視圖相同的幾何體有()
④園柱
D.4個(gè)
二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)
13.如圖,已知A5〃C£>,直線EF分別交AB、CD于點(diǎn)E、F,EG平分N5EF,若/1=50。,則/2的度數(shù)為.
3-x
14.當(dāng)x=-----------時(shí)'分式方的值為零.
15.正多邊形的一個(gè)外角是60。,邊長(zhǎng)是2,則這個(gè)正多邊形的面積為
5
16.要使分式一?有意義,則x的取值范圍為.
x-i
17.JT-3的絕對(duì)值是
18.如圖,半徑為3的。O與RtAAOB的斜邊AB切于點(diǎn)D,交OB于點(diǎn)C,連接CD交直線OA于點(diǎn)E,若/B=30。,
則線段AE的長(zhǎng)為
三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
19.(6分)正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EHLBF所
在直線于點(diǎn)H,連接CH.
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理
由;
(3)如圖3,當(dāng)點(diǎn)E,F分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,
連接CK,請(qǐng)直接寫出線段CK長(zhǎng)的最大值.
20.(6分)如圖,在RSA5C中,NACB=90°,CD_LAB于點(diǎn)£>,5EL45于點(diǎn)3,BE=CD,連接CE,DE.
(1)求證:四邊形C08E為矩形;
(2)若4c=2,tanZACD=1,求OE的長(zhǎng).
21.(6分)計(jì)算:卜創(chuàng)-(Jt-3)o+3tan3O.
22.(8分)平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點(diǎn)C,與x軸正半軸相交于點(diǎn)A,
OA=OC,與x軸的另一個(gè)交點(diǎn)為B,對(duì)稱軸是」直線x=L頂點(diǎn)為P.
(1)求這條拋物線的表達(dá)式和頂點(diǎn)P的坐標(biāo);
(2)拋物線的對(duì)稱軸與x軸相交于點(diǎn)M,求/PMC的正切值-;
(3)點(diǎn)Q在y軸上,且ABCQ與ACMP相似,求點(diǎn)Q的坐標(biāo).
一3
23.(8分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+/>x-'與x軸父于點(diǎn)A(1,0)和點(diǎn)b(-3,0).繞
點(diǎn)4旋轉(zhuǎn)的直線/:y=?x+%交拋物線于另一點(diǎn)O,交y軸于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)點(diǎn)。在第二象限且滿足。=5AC時(shí),求直線/的解析式;
(3)在(2)的條件下,點(diǎn)E為直線/下方拋物線上的?一點(diǎn),直接寫出AACE面積的最大值;
(4)如圖2,在拋物線的對(duì)稱軸上有一點(diǎn)P,其縱坐標(biāo)為4,點(diǎn)。在拋物線上,當(dāng)直線/與y軸的交點(diǎn)C位于y軸負(fù)
半軸時(shí),是否存在以點(diǎn)4,D,P,。為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)O的橫坐標(biāo);若不存在,請(qǐng)說明理
(,2'x2-x
24.。。分)先化簡(jiǎn)】一』?”二罰,再在I,2,3中選取一個(gè)適當(dāng)?shù)臄?shù)代入求值.
25.(10分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點(diǎn)測(cè)得D點(diǎn)的仰角NEAD為45。,
在B點(diǎn)測(cè)得D點(diǎn)的仰角NCBD為60。.求這兩座建筑物的高度(結(jié)果保留根號(hào)).
26.(12分)“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡(jiǎn)稱為紅桔),種植距今至少已有一千多年的歷史,“玫
瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡(jiǎn)稱香橙)現(xiàn)已是萬州柑橘發(fā)展的主推品種之一.某水果店老板在
2017年11月份用15200元購進(jìn)了400千克紅桔和600千克香橙,已知香橙的每千克進(jìn)價(jià)比紅桔的每千克進(jìn)價(jià)2倍還
多4元.求11月份這兩種水果的進(jìn)價(jià)分別為每千克多少元?時(shí)下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)
購進(jìn)這兩種水果,但進(jìn)入12月份,由于柑橘的大量上市,紅桔和香橙的進(jìn)價(jià)都有大幅下滑,紅桔每千克的進(jìn)價(jià)在11
月份的基礎(chǔ)上下降了;〃?%,香橙每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了加%,由于紅桔和“玫瑰香橙”都深受庫區(qū)
5
人民歡迎,實(shí)際水果店老板在12月份購進(jìn)的紅桔數(shù)量比11月份增加了^m%,香橙購進(jìn)的數(shù)量比11月份增加了%,
O
結(jié)果12月份所購進(jìn)的這兩種柑橘的總價(jià)與11月份所購進(jìn)的這兩種柑橘的總價(jià)相同,求”的值.
27.(12分)如圖,在平面直角坐標(biāo)中,點(diǎn)O是坐標(biāo)原點(diǎn),一次函數(shù)y「kx+b與反比例函數(shù)丫2=:(龍》。)的圖象交于
A(1,m)、B(n,1)兩點(diǎn).
(1)求直線AB的解析式;
(2)根據(jù)圖象寫出當(dāng)力>丫2時(shí),x的取值范圍;
(3)若點(diǎn)P在y軸上,求PA+PB的最小值.
參考答案
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1、D
【解析】
先得到圓錐的三視圖,再根據(jù)中心對(duì)稱圖形和軸對(duì)稱圖形的定義求解即可.
【詳解】
解:A、主視圖不是中心對(duì)稱圖形,故A錯(cuò)誤:
B、左視圖不是中心對(duì)稱圖形,故B錯(cuò)誤;
C、主視圖不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故C錯(cuò)誤;
D、俯視圖既是中心對(duì)稱圖形又是軸對(duì)稱圖形,故D正確.
故選:D.
【點(diǎn)睛】
本題考查簡(jiǎn)單幾何體的三視圖,中心對(duì)稱圖形和軸對(duì)稱圖形,熟練掌握各自的定義是解題關(guān)鍵.
2、C
【解析】
解:設(shè)正三角形的邊長(zhǎng)為la,則正六邊形的邊長(zhǎng)為la.過A作AO,5c于O,則/BAO=30。,
360°J3r-11L
,:ZAOB=-^-=20°,:.ZAOD=30°,OD=OB*cos300=la*2—=^a,:.ABO=-BA*OD=-xlaxa=yJ3ai,
正六邊形的面積為:2串a(chǎn)、,邊長(zhǎng)相等的正三角形和正六邊形的面積之比為:小ai:2事ai=l:2.故選C.
點(diǎn)睛:本題主要考查了正三角形與正六邊形的性質(zhì),根據(jù)已知利用解直角三角形知識(shí)求出正六邊形面積是解題的關(guān)鍵.
3、A
【解析】
,.?9<11<16,
6</!〈灰,
即3<JTT<4,
:a,b為兩個(gè)連續(xù)的整數(shù),且a<JTT<8,
/.a=3,b=4,
a+b=7,
故選A.
4、B
【解析】
作軸于C,AOx軸,軸,它們相交于O,有A點(diǎn)坐標(biāo)得到AC=1,OC=1,由于AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)
90。,點(diǎn)。的對(duì)應(yīng)8點(diǎn),所以相當(dāng)是把AAOC繞點(diǎn)4逆時(shí)針旋轉(zhuǎn)90。得到△4BO,根據(jù)旋轉(zhuǎn)的性質(zhì)得A£>=AC=L
BD=OC=1,原式可得到8點(diǎn)坐標(biāo)為(2,1),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征計(jì)算人的值.
【詳解】
作ACLy軸于C,AOLx軸,BD±y^,它們相交于Q,如圖,「A點(diǎn)坐標(biāo)為(1,1),:.AC=i,OC=1.
繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)。的對(duì)應(yīng)8點(diǎn),即把△AOC繞點(diǎn)4逆時(shí)針旋轉(zhuǎn)90。得到△ABD,:.AD=AC=1,BD=OC=1,
二5點(diǎn)坐標(biāo)為(2,1),.,.A=2xl=2.
故選B.
本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=_(4為常數(shù),際0)的圖象是雙曲線,圖象上的點(diǎn)(X,y)
的橫縱坐標(biāo)的積是定值上即孫=?.也考查了坐標(biāo)與圖形變化-旋轉(zhuǎn).
5、B
【解析】
比較這些負(fù)數(shù)的絕對(duì)值,絕對(duì)值大的反而小.
【詳解】
1OQ
在-4、--1、這四個(gè)數(shù)中,比-2小的數(shù)是是-4和-\故選B.
233
【點(diǎn)睛】
本題主要考查負(fù)數(shù)大小的比較,解題的關(guān)鍵時(shí)負(fù)數(shù)比較大小時(shí),絕對(duì)值大的數(shù)反而小.
6、A
【解析】
方程變形后,配方得到結(jié)果,即可做出判斷.
【詳解】
方程x2-4x+l=0,
變形得:X2-4X=T,
配方得:X2-4X+4=-1+4,即(六2%=3,
故選A.
【點(diǎn)睛】
本題考查的知識(shí)點(diǎn)是了解一元二次方程-配方法,解題關(guān)鍵是熟練掌握完全平方公式.
7、D
【解析】
根據(jù)整式的運(yùn)算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數(shù)式中即可得到此題答案.
【詳解】
解:由題意可知:a2-5=2a,
原式=-4a+4+2。+2
—ai—2a+6
=5+6
=11
故選:D.
【點(diǎn)睛】
此題考查整式的混合運(yùn)算,解題的關(guān)鍵在于利用整式的運(yùn)算法則進(jìn)行化簡(jiǎn)求得代數(shù)式的值
8、D
【解析】
解:設(shè)小長(zhǎng)方形的寬為“,長(zhǎng)為4則有。=〃-%,
陰影部分的周長(zhǎng):
2(in-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.
故選D.
9、C
【解析】
分析:先求出A點(diǎn)坐標(biāo),再根據(jù)圖形平移的性質(zhì)得出4點(diǎn)的坐標(biāo),故可得出反比例函數(shù)的解析式,把01點(diǎn)的橫坐標(biāo)
代入即可得出結(jié)論.
2
詳解:點(diǎn)A在函數(shù)y=—-(x<0)的圖象上,
X
當(dāng)x=-l時(shí),y=2,
2).
???此矩形向右平移3個(gè)單位長(zhǎng)度到的位置,
;?嗎(2,0),
?%(2,2).
k
?點(diǎn)4在函數(shù)丁=一(*>0)的圖象上,
1x
.'.k=4,
4
...反比例函數(shù)的解析式為y=-,。](3,0),
?.,qojx軸,
4
...當(dāng)x=3時(shí),y=w,
二尸(3,;).
故選C.
點(diǎn)睛:考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,坐標(biāo)與圖形變化-平移,解題的關(guān)鍵是運(yùn)用雙曲線方程求出點(diǎn)A的坐標(biāo),
利用平移的性質(zhì)求出點(diǎn)勺的坐標(biāo).
10、A
【解析】
根據(jù)相反數(shù)的定義進(jìn)行解答即可.
【詳解】
負(fù)數(shù)的相反數(shù)是它的絕對(duì)值,所以-0.2的相反數(shù)是0.2.故選A.
【點(diǎn)睛】
本題主要考查相反數(shù)的定義,熟練掌握這個(gè)知識(shí)點(diǎn)是解題關(guān)鍵.
11、C
【解析】
利用折線統(tǒng)計(jì)圖結(jié)合相應(yīng)數(shù)據(jù),分別分析得出符合題意的答案.
【詳解】
A選項(xiàng):年最高溫度呈上升趨勢(shì),正確;
B選項(xiàng):2014年出現(xiàn)了這6年的最高溫度,正確;
C選項(xiàng):年的溫差成下降趨勢(shì),錯(cuò)誤;
D選項(xiàng):2016年的溫差最大,正確;
故選C.
【點(diǎn)睛】
考查了折線統(tǒng)計(jì)圖,利用折線統(tǒng)計(jì)圖獲取正確信息是解題關(guān)鍵.
12、D
【解析】
解:①正方體的主視圖與左視圖都是正方形;
②球的主視圖與左視圖都是圓;
③圓錐主視圖與左視圖都是三角形;
④圓柱的主視圖和左視圖都是長(zhǎng)方形;
故選D.
二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)
13、65°
【解析】
因?yàn)锳B〃CD,所以NBEF=18(F-/l=130。,因?yàn)镋G平分/BEF,所以/BEG=65。,因?yàn)锳B〃CD,所以
Z2=ZBEG=65°.
14、2
【解析】
根據(jù)若分式的值為零,需同時(shí)具備兩個(gè)條件:(1)分子為1;(2)分母不為1計(jì)算
即可.
【詳解】
解:依題意得:2-x=l且2x+2#l.
解得x=2,
故答案為2.
【點(diǎn)睛】
本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時(shí)具備兩個(gè)條件:(1)分子為1;(2)
分母不為1是解題的關(guān)鍵.
15、673
【解析】
多邊形的外角和等于360。,因?yàn)樗o多邊形的每個(gè)外角均相等,據(jù)此即可求得正多邊形的邊數(shù),進(jìn)而求解.
【詳解】
正多邊形的邊數(shù)是:360。與0。=6.
正六邊形的邊長(zhǎng)為2cm,
由于正六邊形可分成六個(gè)全等的等邊三角形,
且等邊三角形的邊長(zhǎng)與正六邊形的邊長(zhǎng)相等,
所以正六邊形的面積=6xgxsin60°x22=6jTcm2.
故答案是:60.
【點(diǎn)睛】
本題考查了正多邊形的外角和以及正多邊形的計(jì)算,正六邊形可分成六個(gè)全等的等邊三角形,轉(zhuǎn)化為等邊三角形的計(jì)
算.
16、x,\
【解析】
由題意得
邦,
故答案為X*.
17、7T-1.
【解析】
根據(jù)絕對(duì)值的性質(zhì)即可解答.
【詳解】
n-1的絕對(duì)值是;r-1.
故答案為7t-1.
【點(diǎn)睛】
本題考查了絕對(duì)值的性質(zhì),熟練運(yùn)用絕對(duì)值的性質(zhì)是解決問題的關(guān)鍵.
18、拒
【解析】
要求AE的長(zhǎng),只要求出OA和OE的長(zhǎng)即可,要求OA的長(zhǎng)可以根據(jù)/B=30。和OB的長(zhǎng)求得,OE可以根據(jù)NOCE
和OC的長(zhǎng)求得.
【詳解】
解:連接OD,如圖所示,
由已知可得,ZBOA=90°,OD=OC=3,ZB=30°,ZODB=90°,
;.BO=2OD=6,ZBOD=60°,
ZODC=ZOCD=60°,AO=BOtan30°=6x—=273>
3
VZCOE=90°,OC=3,
AOE=OCtan60°=3x73=3后,
AE=OE-OA=3-/3-2-y3=~/3,
【點(diǎn)晴】
切線的性質(zhì)
三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
19、(1)CH=AB.;(2)成立,證明見解析;(3)372+3
【解析】
(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF絲即可判斷出Nl=/2:然后根據(jù)EHXBF,ZBCE=90°,
可得C、H兩點(diǎn)都在以BE為直徑的圓上,判斷出N4=NHBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB
即可.
(2)首先根據(jù)全等三角形判定的方法,判斷出AABF絲△CBE,即可判斷出N1=N2;然后根據(jù)EH_LBF,ZBCE=90°,
可得C、H兩點(diǎn)都在以BE為直徑的圓上,判斷出N4=/HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB
即可.
(3)首先根據(jù)三角形三邊的關(guān)系,可得CKVAC+AK,據(jù)此判斷出當(dāng)C、A、K三點(diǎn)共線時(shí),CK的長(zhǎng)最大;然后根
據(jù)全等三角形判定的方法,判斷出ADFK會(huì)即可判斷出DK=DH,再根據(jù)全等三角形判定的方法,判斷出
△DAK^ADCH,即可判斷出AK=CH=AB;最后根據(jù)CK=AC+AK=AC+AB,求出線段CK長(zhǎng)的最大值是多少即可.
【詳解】
圖1
在正方形ABCD中,
AB=BC=CD=AD,ZA=ZBCD=ZABC=90°,
??,點(diǎn)E是DC的中點(diǎn),DE=EC,
???點(diǎn)F是AD的中點(diǎn),
..AF=FD,
??EC=AF,
在△ABF和aCBE中,
AB=CB
<ZA=ZBCE
AF=CE
:.AABF^ACBE,
AZ1=Z2,
VEH1BF,ZBCE=90°,
???C、H兩點(diǎn)都在以BE為直徑的圓上,
:.Z3=Z2,
.\Z1=Z3,
VZ3+Z4=90°,Zl+ZHBC=90°,
:.Z4=ZHBC,
ACH=BC,
XVAB=BC,
ACH=AB.
(2)當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論CH=AB仍然成立.
如圖2,連接BE,
A
圖2
在正方形ABCD中,
AB=BC=CD=AD,ZA=ZBCD=ZABC=90°,
VAD=CD,DE=DF,
AAF=CE,
在△ABF和^CBE中,
AB=CB
<NA=/BCE
AF=CE
..△ABF^ACBE,
AZ1=Z2,
VEH1BF,ZBCE=90°,
???C、H兩點(diǎn)都在以BE為直徑的圓上,
:.Z3=Z2,
AZ1=Z3,
VZ3+Z4=90°,Zl+ZHBC=90°,
:.Z4=ZHBC,
ACH=BC,
XVAB=BC,
ACH=AB.
(3)如圖3,
VCK<AC+AK,
???當(dāng)C、A、K三點(diǎn)共線時(shí),CK的長(zhǎng)最大,
VZKDF+ZADH=90°,ZHDE+ZADH=90°,
.\ZKDF=ZHDE,
ZDEH+ZDFH=360°-ZADC-ZEHF=360o-90o-90o=180°,ZDFK+ZDFH=180°,
:.ZDFK=ZDEH,
在ZkDFK和中,
AKDF=ZHDE
<DF=DE
ZDFK=ZDEH
.,.△DFK^ADEH,
ADK=DH,
在^DAUIUDCH中,
DA=DC
<ZKDA=ZHDC
DK=DH
AADAK^ADCH,
AAK=CH
XVCH=AB,
AAK=CH=AB,
VAB=3,
??AK=3,AC=3@
:.CK=AC+AK=AC+AB=372+3,
即線段CK長(zhǎng)的最大值是3匹+3.
考點(diǎn):四邊形綜合題.
20、⑴見解析;(2)1
【解析】
分析:⑴根據(jù)平行四邊形的判定與矩形的判定證明即可;(2)根據(jù)矩形的性質(zhì)和三角函數(shù)解答即可.
詳解:(1)證明:
CDLAB于點(diǎn)D,BELAB于點(diǎn)B,
:.NCDA=NDBE=90。.
:.CD//BE.
又:BE=CD,
A四邊形C0Z?E為平行四邊形.
又?;NDBE=90°,
,四邊形CDBE為矩形.
(2)解:?;四邊形CQ5E為矩形,
,DE=BC.
,/在R3ABC中,ZACB=90°,CDLAB,
可得ZACD=ZABC.
?:tanZACD=2.,
2
...tanZABC=tanZACD=—.
2
在RSABC中,ZACB=90°fAC=2,tanZABC=i,
???DE=BC=1.
點(diǎn)睛:本題考查了矩形的判定與性質(zhì),關(guān)鍵是根據(jù)平行四邊形的判定與矩形的判定解答.
21、273-4.
【解析】
利用特殊角的三角函數(shù)值以及負(fù)指數(shù)基的性質(zhì)和絕對(duì)值的性質(zhì)化簡(jiǎn)即可得出答案.
【詳解】
n
解:原式=JT—l—l+3x號(hào)—2
=273-4.
故答案為2JT-4.
【點(diǎn)睛】
本題考查實(shí)數(shù)運(yùn)算,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)耗,正確化簡(jiǎn)各數(shù)是解題關(guān)鍵.
1
22、(1)(1,4)(2)(0,-)或(0,-1)
【解析】
試題分析:(1)先求得點(diǎn)C的坐標(biāo),再由OA=OC得到點(diǎn)A的坐標(biāo),再根據(jù)拋物線的對(duì)稱性得到點(diǎn)B的坐標(biāo),利用
待定系數(shù)法求得解析式后再進(jìn)行配方即可得到頂點(diǎn)坐標(biāo);
(2)由OC//PM,可得NPMC=/MCO,求tan/MCO即可;
(3)分情況進(jìn)行討論即可得.
試題解析:(1)當(dāng)x=0時(shí),拋物線y=ax2+bx+3=3,所以點(diǎn)C坐標(biāo)為(0,3),,OC=3,
VOA=OC,;.OA=3,..A(3,0),
,:A、B關(guān)于x=l對(duì)稱,AB(-1,0),
VA>B在拋物線y=ax2+bx+3上,
9a+3b+3=0a=-l
??[a-b+3=0…?,=2'
.?.拋物線解析式為:y=-x2+2x+3=-(x-1)2+4,
頂點(diǎn)P(1,4);
(2)由(1)可知P(1,4),C(0,3),所以M(1,0),..OC=3,OM=L
VOC//PM,AZPMC=ZMCO,
OM1
/.tanZPMC=tanZMCO=—-=-;
OC3
(3)Q在C點(diǎn)的下方,ZBCQ=ZCMP,
CM=g,PM=4,BC=g,
BCCMBCCM
’遠(yuǎn)一兩或遠(yuǎn)一兩’
5
,CQ=爹或4,
1
???Q/O,-),Q2(0,-1).
139
23、(1)j=-x2+x--;(2)j=-x+l;(3)當(dāng)x=-2時(shí),最大值為?;(4)存在,點(diǎn)。的橫坐標(biāo)為-3或"或
【解析】
(1)設(shè)二次函數(shù)的表達(dá)式為:y—a(x+3)(x-1)=ax2+2ax-3a,即可求解;
ACAO1
(2)OC//DF,則學(xué)二/二三,即可求解;
CDOF5
(3)由SA.CE=S"”E-SACME即可求解;
(4)分當(dāng)AP為平行四邊形的一條邊、對(duì)角線兩種情況,分別求解即可.
【詳解】
(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x-1)=ax2+2ax-3a,
c31
即:—3。二-2,解得:
13_
故函數(shù)的表達(dá)式為:y='X2+x—2①;
(2)過點(diǎn)0作。尸,X軸交于點(diǎn)凡過點(diǎn)£作丁軸的平行線交直線AD于點(diǎn)M,
ACAO1
?:OC〃DF,:.CD=0F=5'OF=5OA=5f
故點(diǎn)。的坐標(biāo)為(-5,6),
6=-5m+n=-l
將點(diǎn)A、。的坐標(biāo)代入一次函數(shù)表達(dá)式:〃得:〈八,解得:i[
0=〃?+〃n=l.
即直線A。的表達(dá)式為:j=-x+L
(3)設(shè)點(diǎn)E坐標(biāo)為(x,蒙X2+x-則點(diǎn)M坐標(biāo)為(x,-x+l),
E,,131c5
貝ijEM——x+1——X--x+———X2—2x+—,
2222
S=S-S=lxlxEM=__L(X+21+2,
hACEAAMEACME244
,/a=-J<0,故SA*E有最大值,
9
當(dāng)x=-2時(shí),最大值為彳;
(4)存在,理由:
①當(dāng)A尸為平行四邊形的一條邊時(shí),如下圖,
設(shè)點(diǎn)O的坐標(biāo)為,》2+,一
將點(diǎn)A向左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)P的位置,
同樣把點(diǎn)D左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)Q的位置,
則點(diǎn)。的坐標(biāo)為+
將點(diǎn)Q的坐標(biāo)代入①式并解得:f=-3;
②當(dāng)4尸為平行四邊形的對(duì)角線時(shí),如下圖,
4尸中點(diǎn)的坐標(biāo)為(0,2),該點(diǎn)也是0。的中點(diǎn),
=0t
2fm=-t
則:\13HP:111
〃+_/2+f-_n=—-/2-t+-,
22=,I22
[2,
將點(diǎn)。坐標(biāo)代入①式并解得:加=±JZ
故點(diǎn)O的橫坐標(biāo)為:-3或J7或-J7.
【點(diǎn)睛】
本題考查的是二次函數(shù)綜合運(yùn)用,涉及到圖形平移、平行四邊形的性質(zhì)等,關(guān)鍵是(4)中,用圖形平移的方法求解點(diǎn)
的坐標(biāo),本題難度大.
X
24、---彳,當(dāng)x=2時(shí),原式=一2.
x-3
【解析】
試題分析:先括號(hào)內(nèi)通分,然后計(jì)算除法,最后取值時(shí)注意使得分式有意義,最后代入化簡(jiǎn)即可
試題解析:
(X-12)X(x-1)X-3X(x-1)x
原式=〔言一二1『仁五曰=f,^^正二二3
2,
當(dāng)x=2時(shí),原式一廠二一2?
2-J
25、甲建筑物的高AB為(30小-30)m,乙建筑物的高DC為300m
【解析】
如圖,過A作AFJ_CD于點(diǎn)F,
D
B
在RSBCD中,ZDBC=60°,BC=30m,
CD
V—=tanZ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 濟(jì)南制作培訓(xùn)公司
- 活動(dòng)話術(shù)培訓(xùn)
- 2024-2025學(xué)年山東省濱州市高一下學(xué)期期末測(cè)試歷史試題(解析版)
- 松下員工培訓(xùn)體系
- 2026年旅游規(guī)劃師專業(yè)認(rèn)證題集目的地規(guī)劃與管理策略
- 2026年編程語言Python基礎(chǔ)與進(jìn)階題庫
- 2026年建筑師職業(yè)資格考試題庫及答案解析
- 2026年知識(shí)產(chǎn)權(quán)保護(hù)試題侵權(quán)行為與維權(quán)措施
- 2026年網(wǎng)絡(luò)營(yíng)銷專家社交媒體營(yíng)銷方向營(yíng)銷技巧模擬題
- 2026年化學(xué)實(shí)驗(yàn)操作規(guī)范實(shí)驗(yàn)室安全防護(hù)題庫
- DB4403-T 427-2024 叉車運(yùn)行監(jiān)測(cè)系統(tǒng)技術(shù)規(guī)范
- DB4201-T 575-2019 武漢市環(huán)境衛(wèi)生作業(yè)規(guī)范
- 食品殺菌原理培訓(xùn)課件
- 2024年度醫(yī)院糖尿病門診護(hù)理工作計(jì)劃課件
- 《營(yíng)銷法律知識(shí)培訓(xùn)》課件
- 智慧發(fā)改建設(shè)方案
- 通用技術(shù)實(shí)驗(yàn)報(bào)告
- 胸腹聯(lián)合傷課件
- 人教版一年級(jí)數(shù)學(xué)下冊(cè)早讀內(nèi)容教學(xué)課件
- 游梁式抽油機(jī)概述
- 林木育種學(xué)(華南農(nóng)業(yè)大學(xué))智慧樹知到答案章節(jié)測(cè)試2023年
評(píng)論
0/150
提交評(píng)論