版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高考數(shù)學(xué)高三模擬考試試卷壓軸題高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)(文科)
一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有
一項是符合題目要求的?
1.已知集合A,3,C,A=L|X2—3X+2=0±B=U|0<X<5,XGN},則滿足條件
A=8=C的集合c的個數(shù)為()
A.IB.2C.3D.4
【測量目標(biāo)】集合的基本運算.
【考查方式】子集的應(yīng)用.
【參考答案】D
【試題解析】求力=1x1x2—3x+2=0,XCR}={rI(X-1)(X-2)=0,xeR)
={1,2},易知8={》10<%<5/€#={1,2,3,4}.因為4口。18,所以根據(jù)子集的
定義,集合C必須含有元素1,2,且可能含有元素3,4,原題即求集合{3,4}的子集個數(shù),
即有22=4個做選D.
2.容量為20的樣本數(shù)據(jù),分組后的頻數(shù)如下表:
分組[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
頻數(shù)234542
則樣本數(shù)據(jù)落在區(qū)間[10,40)的頻率為()
A.0.35B.0.45C.0.55D.0.65【測量目標(biāo)】頻數(shù)分布表的應(yīng)用,頻率的計算,
對于頻數(shù)、頻率等統(tǒng)計問題
【考查方式】通過弄清楚樣本總數(shù)與各區(qū)間上樣本的個數(shù),用區(qū)間上樣本的個數(shù)除以
樣本總數(shù)就可得到相應(yīng)區(qū)間上的樣本頻率.
【參考答案】B
【試題解析】由頻數(shù)分布表可知:樣本數(shù)據(jù)落在區(qū)間”0,40)內(nèi)的頻數(shù)為2+3+4=9,
9
樣本總數(shù)為2+3+4+5+4+2=20,故樣本數(shù)據(jù)落在區(qū)間[10,40)內(nèi)頻率為詼=0.45.
故選B.
3.函數(shù)/(x)=xcos2x在區(qū)間上10,2d的零點的個數(shù)為()
A.2B.3C.4D.5
【測量目標(biāo)】函數(shù)零點求解與判斷.
【考查方式】通過函數(shù)的零點,要求學(xué)會分類討論的數(shù)學(xué)思想
【參考答案】D
【試題解析】由/(x)=xcos2x=0,得無=0或cos2x=0;其中,由cos2x=0,
得2x=kn+^GeZ),故x=^+1(keZ).又因為xe[0,2兀〕,所以
兀3無5兀7兀.
x=二,丁,=,-7.所以零點的個數(shù)為1+4=5個.故選D.
4444
4.命題“存在一個無理數(shù),它的平方是有理數(shù)’的否定是()
A.任意一個有理數(shù),它的平方是有理數(shù)B.任意一個無理數(shù),它的平方不是有理數(shù)
C.存在一個有理數(shù),它的平方是有理數(shù)D.存在一個無理數(shù),它的平方不是有理數(shù)
【測量目標(biāo)】命題的否定.
【考查方式】求解特稱命題或全稱命題的否定,千萬別忽視了改變量詞;
【參考答案】B
【試題解析】根據(jù)特稱命題的否定,需先將存在量詞改為全稱量詞,然后否定結(jié)論,
故該命題的否定為“任意一個無理數(shù),它的平方不是有理數(shù)”.故選B.
5.過點尸(1,1)的直線,將圓形區(qū)域分為兩部分,使{(x,y)|X2+y24)}得這兩部分的
面積之差最大,則該直線的方程為()
A.x+y=OB,y-l=Oc.x-y=OD.x+3y-4=0<
【測量目標(biāo)】考查直線、線性規(guī)劃與圓的綜合運并學(xué)會用數(shù)形結(jié)合思想.
【考查方式】通過觀察圖形發(fā)現(xiàn)當(dāng)面積之差最大時,所求直線應(yīng)與直線。尸垂直,利
用這一條件求出斜率,進而求得該直線的方程.
【參考答案】A
【試題解析】要使直線將圓形區(qū)域分成兩部分的面積之差最大,必須使過點P的圓的
弦長達到最小,所以需該直線與直線。尸垂直即可.又已知點P(LD,則攵0P=1,故所求直
線的斜率為-1.又所求直線過點P(l,l),故由點斜式得,所求直線的方程為
y-l=-G-l),即x+y_2=0.故選A.
2
6.已知定義在區(qū)間(0,2)上的1一一函數(shù)的圖象y=/(x)如圖所示,則y=-/(2-x)的
71
圖象為()
【測量目標(biāo)】函數(shù)的圖象的識別.
【考查方式】利用特殊值法(特殊點),特性法(奇偶性,單調(diào)性,最值)結(jié)合排除法求
解
【參考答案】B
【試題解析】排除法:當(dāng)x=l時,y=-f(2-x)=-f(1-2)=-/(1)=-1,故可排除
A,C項;當(dāng)X=2時,y=-/G-2)=-/(2-2)=-/(0)=0,故可排除D項;所以由
排除法知選B.
7.定義在(-0o,0)(0,+co)上的函數(shù)/(x),如果對于任意給定的等比數(shù)列{a},
{/(?)}仍是等比數(shù)列,則))稱為“保等比數(shù)列函數(shù)現(xiàn)有定義在上的如下
(-oo,0)(0,+00)函數(shù):
①/(X)=X2;②/(x)=2.r;③/(%)=桐;④/(X)=ln|x|.
則其中是“保等比數(shù)列函數(shù)''的的/(X)序號為
A.①②B.③④C.①③D.②④【測量目標(biāo)】等比數(shù)列的新應(yīng)用,
函數(shù)的概念.
【考查方式】讀懂題意,然后再去利用定義求解,注意數(shù)列的通項
【參考答案】C
[\八f(a)
【試題解析】設(shè)數(shù)列%j的公比為4.對于①,與一二一二平,是常數(shù),故①符
于(a)。2
f(a)2?,
合條件;對于②,===2“““-””,不是常數(shù),故②不符合條件;對于③,
/(?)2%
/(Q)J^~\
f(a)JTT
nYn
L……)In1I…
=",是常數(shù),故③符合條件;對于④,,^二?,不是常數(shù),故④不
TI1IZ7I
符合條件.山“保等比數(shù)列函數(shù)”的定義知應(yīng)選C
8.設(shè)△ABC的內(nèi)4,5,。所對的邊分別為。力,c.若三邊的長為連續(xù)的三個正整數(shù),且
A>B>C,3b-20acosA,貝ijsinA:sin8:sinC為()
A.4:3:2B,5:6:7c,5:4:3D,6:5:4
【測量目標(biāo)】正、余弦定理以及三角形中大角對大邊的應(yīng)用.
【考查方式】本題需求解三個角的正弦的比值,明顯是要利用正弦定理轉(zhuǎn)化為邊長的
比值,因此必須求出三邊長,注意正余弦定理與和差角公式的結(jié)合應(yīng)用.
【參考答案】D
【試題解析】因為。,仇c為連續(xù)的三個正整數(shù),且A>8〉C,可得a〉b〉c,所以
3b
a=c+2,b=c+l①;又因為已知3b=20acosA,所以cosA=—②.由余弦定理可得
,b2+c2-a23bb2+C2—。2
cosA=——-----③,則由②③可得—-=④,聯(lián)立①④,得
7C2-13C-60=0,解得c=4或cy(舍去),貝ija=6,b=5.故由正弦定理可
得,sinA:sinB:sinC-a:b:c-6:5:4.故應(yīng)選D.
111
9.設(shè)a,8,ceR,"abc=1”是“—+—+—a+6+c”的()
y/ayfby/c
A.充分條件但不是必要條件B.必要條件但不是充分條件
C.充分必要條件D.既不充分也不必要的條件【測量目標(biāo)】充
要條件的判斷,不等式的證明.
【考查方式】首先需判斷條件能否推得結(jié)論,然后需判斷結(jié)論能否推得條件
【參考答案】A
【試題解析】abc=1時,
11=>Jab+\/bc+yJca,
而2(a+/?+c)=(a+Z?)+(/?+c)+(c+a)2jab+2y/bc+2jca(當(dāng)且
僅當(dāng)
a=b=且abc=1即a=b=c時等號成立)故
111
—+—+—y/ab+>Jbc+>/caa+b+c;但當(dāng)取a=b=c=2,顯然有
■Ja#Jc
111111
—=+—=+—=a+b+c,但abc工1,即由—+—+—a+b+c不可以推得
JaJbyjcyJayjby/c
Miii
abc=1.綜上,abc=1是一產(chǎn)+一萬+—尸a+b+c的充分不必要條件,應(yīng)選A.
JayjbJc
10.如圖,在圓心角為直角的扇形OAB中W分別以O(shè)A,OB為直徑作兩個半圓.在扇形
OAB
內(nèi)隨機取一點,則此點取自陰影部分的概率是()
111
A.2-7tB,
71
1二D.2
C.
n無
【測量目標(biāo)】古典概型的應(yīng)用以及觀察推理的能力.
【考查方式】求解陰影部分的面積,將不規(guī)則圖形的面積化為規(guī)則圖形的面積來求解
[參考答案】C
【試題解析】如下圖所示,設(shè)。4的中點為。,。8的中點為。,半圓。與半圓。
I2I2
的交點分別為。,尸,則四邊形。。F。是正方形.不妨設(shè)扇形的半徑為2,記兩塊白色區(qū)
12
域的面積分別為一》兩塊陰影部分的面積分別為?
則S+S+S+S=S=—7CX22=7C,①
1234扇形0484
而S+S=-71X12=A7T,5+S=—71X12=2?兀,即S+S+2S=兀,
②
由①②,得5=S.
34
又由圖象觀察可知,S4二s扇形小—S-5-S
扇形扇形QA/正方形oq尸q
=71X12--7CX12--71X12-12=-7CX12-12=-7C-l
4422
故由兒何概型概率公式可得,此點取自陰影部分的概率:
S+S2S兀一22
P=34=4-----=1一一.故選C.
SS7171
扇形048扇形。48
二、填空題:本大題共7小題,每小題5分,共35分.請將答案填在答題卡對應(yīng)題號
的位
置上.答錯位置,書寫不清,模棱兩可均不得分.
11.一支田徑運動隊有男運動員56人,女運動員42人.現(xiàn)用分層抽樣的方法抽取若干人,
若抽取的男運動員有8人,則抽取的女運動員有人.
【測量目標(biāo)】分層抽樣的應(yīng)用.
【考查方式】分層抽樣在生活中的應(yīng)用.分層抽樣時,各樣本抽取的比例應(yīng)該是一樣的,
即為抽樣比.
【參考答案】6
a8
【試題解析】設(shè)抽取的女運動員的人數(shù)為“,則根據(jù)分層抽樣的特性,有方=72,解
4256
得。=6.故抽取的女運動員為6人.
3+歷,
12.若b-~「=a+bi(a,6為實數(shù),i為虛數(shù)單位),則a+b=.
2*-i1-1
【測量目標(biāo)】復(fù)數(shù)代數(shù)形式的四則運算.
【考察方式】通過考查復(fù)數(shù)相等來判斷學(xué)生對復(fù)數(shù)的掌握
【參考答案】3
【試題解析】因為咨=。+歷,所以3+玩<+歷)G-i)入+"(又因為〃力都
a+h=3[?=0
為實數(shù),故由復(fù)數(shù)的相等的充要條件得,/解得,0,所以a+b=3.
b-a-b也=3
13已知向量0=(1,0),b=(l,l),則
(I)與2a+/同向的單位向量的坐標(biāo)表示為;
(II)向量與b-3a向量a夾角的余弦值為.
【測量目標(biāo)】單位向量的概念,平面向量的坐標(biāo)運算,向量的數(shù)量積運算等
【考查方式】給出兩個向量,利用向量的坐標(biāo)和向量的數(shù)量積來運算求值
(3加聞]2y/5
【參考答案】(II)-5
【試題解析】(I)由。=(l,o),b=(l,l),得2a+b=(3,l).設(shè)與為+,同向的單位向量
_3加__
為c=(x,y),則.:+)-且x,y>0,解得.=故c=P),咱].即與
[3y-x=0,71011010J
y~———?
I10
2a+,同向的單位向量的坐標(biāo)為恭.
\/
(II)由。=(1,0)力=(1,1),得5-3?=(—2,1).設(shè)向量。一3a與向量a的夾角為0,則
(*-3a)a(-2,1)(1,0)26
COS0=------------=-------=----------=-▼一
|ft-3a||?|"xl5
*.[x-y—1
14.若變量滿足約束條件<x+y1,則目標(biāo)函數(shù)z=2x+3y的最小值是.
3x?3
【測量目標(biāo)】二元線性規(guī)劃求目標(biāo)函藪最小值.
【考查方式】給出約束條件,判斷可彳,或,利用可行域求解.
【參考答案】2
x-y-1
【試題解析】作出不等式組<x+y1所表示的可行域(如下圖的△AB”及其內(nèi)部),目
3X-R3
標(biāo)函數(shù)z=2x+3y在AABM的靠個端點A(2,3),8(0,1),M(1,0)處取的值分別為
13,3,2,比較可得目標(biāo)函數(shù)Z=2x+3),的最小值為2.
15.已知某幾何體的三視圖如圖所示,則該幾何體的體積為.
【測量目標(biāo)】考查圓柱的三視圖的識別,圓柱的體積
【考查方式】在生活中要多多觀察身邊的實物都是由什么幾何形體構(gòu)成的,以及它們的三
視圖的畫法.
【參考答案】12兀
【試題解析】由三視圖可知,該幾何體是由左右兩個相同的圓柱(底面圓半徑為2,高為
1)與中間一個圓柱(底面圓半徑為1,高為4)組合而成,故該幾何體的體積是
V=7^x22x1x2+71x12x4=1271.
16.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出的結(jié)果
CTO
In=1,0=(),”=1I
卜=、+〃|
心/+2|
是/岬町7
”-,,+1|1
結(jié)束
【測量目標(biāo)】順序結(jié)構(gòu)框圖和判斷結(jié)構(gòu)框圖的執(zhí)行求解.
【考查方式】對于循環(huán)結(jié)構(gòu)的輸出問題,一步一步按規(guī)律寫程序結(jié)果
【參考答案】9
【試題解析】由程序框圖可知:
第一次:a=l,s=O,〃=l,s=s+a=1,。=。+2=3,滿足判斷條件〃<3?;
第二次"=2,a=4,。=5,滿足判斷條件〃<3?
第三次:〃=3,s=9,a=7,此時不滿足判斷條件〃<3?,故終止運行,輸出s的值.
綜上,輸出的s值為9.
17.傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上畫點或用小石子表示數(shù)他們研究
過如圖所示的三角形數(shù):1fc
將三角形數(shù)1,3,6,10,b記為數(shù)列{勺},將可修整除的三角形數(shù)按從小到大
的順序組成一個新數(shù)列嶺}.同以推眺J武師鹵?S?
(1)6是數(shù)列{4}中向第照第I,感'10
2012”
(II).(用k表示)
2k-\
【測量目標(biāo)】數(shù)學(xué)歸納法.
【考查方式】本題考查歸納推理,猜學(xué)的能々.
5M51)
【參考答案】(I)5030;(II)——-——
【試題解析】易知。=,寫出數(shù)列%}的若干項依次為:
n2〃
1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,…,發(fā)現(xiàn)其中能被5整除的
為10,15,45,55,105,120,190,210,故b=10=a,b=15=。.
1425
同理,b=a,b=a,h=a,b=a,b=a,h=a.
39410514615719820
5M5Z+1)
從而由上述規(guī)律可猜想:b=a=——-——
2k5k2
(5I)(5I+1)5M51)
b=a=-----------------(人為正整數(shù)).
2k-\5k-\22
故6=b=a=a,即6是數(shù)列%}中的第5030項.
20122x10065x100650302012n
三、解答題:本大題共5小題,共65分.解答應(yīng)寫出文字說明、證明過程或演算步驟
18.(本小題滿分12分)_
設(shè)函數(shù)/(x)=sin2£Ox+2>/3sina)xcosx-cos?3x+九(xeR),的圖象關(guān)于直線
x=n對稱,其中3,兀為常數(shù),且3e(;,l)
(I)求函數(shù)/(X)的最小正周期;.
71
(II)若y=/(x)的圖象經(jīng)過點(二,0),求函數(shù)/(x)的值域.
【測量目標(biāo)】三角函數(shù)的圖象的周期性,值域,誘導(dǎo)公式的應(yīng)用.
【考查方式】給出函數(shù),利用三角函數(shù)的性質(zhì)求最小值和周期.
【試題解析】解:(I)因為/(x)=sin2(ox-cos23x+2/sin(Dxcos?>x+九
=2sin(2cox--)+A,.
6
由直線犬=兀是y=/3)圖象的一條對稱軸,可得$皿(28%一?)=±1,
6
jrJTk1
所以2co?!?E+—(A£Z),即O=—+—(k£Z).
6223
又1),kwZ,所以%=1,故co=,.
所以/(X)的最小正周期是M
TTTT
(II)由y=/(x)的圖象過點(一,0),得/(一)=0,
44
BPX=-2sin(-x---)=-2sin-=-\fl,BPX=->J1.
6264
故/(x)=2sin(-x--)->/2,函數(shù)f(x)的值域為[-2-£2-72]?
19.(本小題滿分12分)
某個實心零部件的形狀是如圖所示的幾何體,其下部是底面均是正方形,側(cè)面是全等
的等腰梯形的四棱臺ABCD-ABCDBDV,上部是一
個底面與四棱臺的上底面重合,側(cè)面是全等的矩形的四棱
柱ABCD-ABCD
2222
(I)證明:直線3。,平面ACCA;
II22
(II)現(xiàn)需要對該零部件表面進行防腐處理.已知AB=10,
4B=20,AA=30,AA=13(單位:厘米),每
2221
平方厘米的加工處理費為0.20元,需加工處理費多少
第19題圖
元?
【測量目標(biāo)】線面垂直,空間幾何體的表面積;考查空間想象,運算求解以及轉(zhuǎn)化與
劃歸的能力.
【考查方式】通過線線垂直證明面面垂直,并用公式求體積
【試題解析】解:(I)因為四棱柱ABC。-ABCD的側(cè)面是全等的矩形,
2222
所以A4J.AB,A4J.AD.又因為48AO=A,所以44平面
222
ABCD.。
連接BD,因為BOu平面ABCD,所以A41BD.
2
因為底面ABCD是正方形,所以AC,8。
根據(jù)棱臺的定義可知,BD與B1D1共面.
又已知平面ABCD〃平面A8C。,且平面88。。平面
lilt??
ABCD=BD,A
平面BBDD平面ABC。=BO,所以BlD1〃BD.于是
1I111111
由AA,AC1BD,BlD1〃BD,可得
2
AA1BD,.ACLBD
211II
又因為A4AC=A,所以5。_L平面ACCA.
21122
(II)因為四棱柱ACO-ABCO的底面是正方形,側(cè)面是全等的矩形,所以
2222
S=S+S=(AB)2+4AB-AA=102+4x10x30=1300(cm2)
I四棱柱上底面四樓柱側(cè)面222
又因為四棱臺43CO-ABC。的上、下底面均是正方形,側(cè)面是全等的
iiii
等腰梯形,
所以S=S+S=(AB)2+4x-(AB+AB)h
2四棱臺卜底面四棱臺側(cè)面II2II等腰梯形的高
=202+4x1(10+20)J132-[^(20-10)]2=1120(cm2).
于是該實心零部件的表面積為S=S+S=1300+1120=2420(cm2),
12
故所需加工處理費為0.25=0.2x2420=484(元).
20.(本小題滿分13分)
已知等差數(shù)列僅}前三項的和為-3,前三項的積為8.
n
(1)求等差數(shù)列M}的通項公式;
n
(II)若%,4,成等比數(shù)列,求數(shù)列{|。}的前"項和.
【測量目標(biāo)】本題考查等差數(shù)列的通項,求和等.
【考查方式】考查分類討論的數(shù)學(xué)思想以及運算求解的能力求等差數(shù)列的通項一般利
用通項公式a=a+("—Dd求解;有時需要利用等差數(shù)列的定義:a-a=c(c為
n1nn-\
常數(shù))或等比數(shù)列的定義:£-二c'(C’為常數(shù),c'wO)來判斷該數(shù)列是等差數(shù)列或
a
M-I
等比數(shù)列,然后再求解通項;有些數(shù)列本身不是等差數(shù)列或等比數(shù)列,但它含有無數(shù)項
卻是等差數(shù)列或等比數(shù)列,這時求通項或求和都需要分段討論.
【試題解析】解:(I)設(shè)等差數(shù)列{a}的公差為d,則a+d,a=a+2d,
n2131
3a+3d=-3,a=2,或、3T
由題意得1
a[a+d)(a+2d)=8.d=-3,
iii
所以由等差數(shù)列通項公式可得
a=2-3(九一1)=一3〃+5,或。=-4+3(〃-1)=3〃一7.
nn
故。=一3〃+5,或。=3〃一7.
(II)當(dāng)a=-3n+5時,afa,。分別為T,-4,2,不成等比數(shù)列;
n23I
當(dāng)a=3〃一7時,aa,。分別為-1,2,-4,成等比數(shù)列,滿足條
ti231
件.
—3n+7,〃=12
故I〃1=13n-71=
n3〃一7,n>3.
記數(shù)列{la1}的前〃項和為S.
nn
當(dāng)〃=1時,S=\a1=4;當(dāng)〃=2時,S=\a\+\a1=5;
1I212
當(dāng)力23時,
=5+4產(chǎn)想央一9。當(dāng)7時,滿足此式.
[4,〃=1,
綜上,S=<3
“一〃2—n+10,n>1.
2
22.(本小題滿分14分)
設(shè)函數(shù)/(幻=如"(1一幻+人)+》=1,/。)<」-,〃為正整數(shù),a,b為常數(shù).曲線
ne
y=f(x)在(L/(D)處的切線方程為.x+y=1
(1)求a,b的值;
(II)求函數(shù)/(x)的最大值;
(III)證明:/(%)<1.
ne
【測量目標(biāo)】函數(shù)導(dǎo)數(shù)的幾何意義以及單調(diào)性的應(yīng)用,還考查不等式的證明.
【考查方式】通過轉(zhuǎn)化與劃歸,分類討論的數(shù)學(xué)思想以及運算求解的能力.導(dǎo)數(shù)的幾何
意義一般用來求曲線的切線方程,導(dǎo)數(shù)的應(yīng)用一般用來求解函數(shù)的極值,最值,證明不等
式等.
【試題解析】解:(I)因為f(D=b,由點(1切在x+y=l上,可得1+〃=1,即
b=0.
因為了'(1)=-Q(〃+1)X”,所以/'(1)=一。.
又因為切線x+y=l的斜率為—1,所以一。=一1,即。=1.故。=1,
b=0.
.n
(II)由(I)知,f(x)=x?(1-x)=X"-X?+1,f(x)=(n+l)x?-i(-----x).
/?+l
nn
令_fa)=o,解得x=^—即r(x)在(o,+—;)(o,+8)上有唯一零點
n+ln+\
fl
在(0,+—j)上,f'M>0,故/(x)單調(diào)遞增;
rt+1
幾
而在(1--^,+8)上,f(X)<0,f(X)單調(diào)遞減.
〃+1
,nn?
故/(x)在(0,+s)上的最大值為了(——-)=---.
n+1(n+1)?+i
(III)令中'?)=lnf—l+l(f>0),則<p'⑺=1-_L=£11Q>0).
tt12t2
在(0,1)上,<p'(f)<0,故<p(f)單調(diào)遞減;
而在(L+oo)上<p'Q)>0,(p⑴單調(diào)遞增.
故(P(t)在(0,+oo)上的最小值為(P(1)=0.所以(p(f)>0Q>1),
即Inf〉1」Q〉1).
t
A.1./?+11n4-1.1
令/=1+—,得In---->----,HPln(----)H+I>Ine,
nn〃+1n
/〃+1、.幾〃1
所以(——)用>1,即:~~—<—.
n(〃+l)"+ine
n
由(II)知,工=--,故所證不等式成立.
〃+1
.21.(本小題滿分14分)
設(shè)A是單位圓"+>2=1上的任意一點,/是過點A與x軸垂直的直線,。是直線/
與X軸的交點,點M在直線/上,且滿足|DM|=m|DA|(M>0,且MW1).當(dāng)點A在
圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求其焦點坐標(biāo);
(II)過原點斜率為大的直線交曲線C于P,Q兩點,其中P在第一象限,且它在y
軸上的射影為點N,直線QN交曲線C于另一點”.是否存在m,使得對任意
的,K>0都有PQ_LPH?若存在,求,"的值;若不存在,請說明理由.
【測量目標(biāo)】本題考查橢圓的標(biāo)準(zhǔn)方程,直線與圓錐曲線的位置關(guān)系
【考查方式】考查分類討論的數(shù)學(xué)思想以及運算求解的能力.本題是一個橢圓模型,求
解標(biāo)準(zhǔn)方程時注意對焦點的位置分類討論.
【試題解析】解:(I)如圖1,設(shè)M(x,y),A(x,y),則由
00
|DM|=m|DA|(m>O,fim^1),
可得x=卜|二機聞,所以x==①
因為A點在單位圓上運動,所以通+^2二=1(m>0,且加W1)②
m2
將①式代入②式即得所求曲線C的方程為.X2+23=1(加>0,且機k1)
m2
因為加e(0,1)(1,+8),所以
當(dāng)0<相<1時,朋線C是焦點在x軸上的橢圓,
兩焦點坐標(biāo)分別為(-J1-小2,0),(V1-W2,0);
當(dāng)陽>1時,曲線C是焦點在y軸上的橢圓,
兩焦點坐標(biāo)分別為(0,--1)>(0,-7/722-1).
(II)Vxe(0,1),設(shè)P(x,y),H(x,y),貝(lQ(-x,-y),
1)122I1
N(0,y),
I
因為尸,〃兩點在橢圓C上,所以產(chǎn)鬣+);=機2,兩式相減可得
\ni2x2+y2=機2,
I22
/?72(X2-X2)4-(y2-V2)=0.③
12I2
依題意,由點尸在第一象限可知,點H也在第一象限,目尸,“不重合,
故(尢-x)(x+x)工0.于是由③式可得
1212
(y「八)();+)?=_仙④
(X-X)。+尤)
1212
又Q,N,"三點共線,所以k=k,即雙=工E.
QNQHxX+X
I12
于是由④式可得左-k=工.2^4」.2_2必3=-”
PQPHXx-X2(X-X)(x+x)2
1I21212
而PQ1PH等價于kk=-1,即-絲=-1,又加>0,得機=JI,
PQPH2
故存在機=正,使得在其對應(yīng)的橢圓心+21=1上,對任意的2>0,都有
2
PQPH
高考理科數(shù)學(xué)試題及答案
(考試時間:120分鐘試卷滿分:150分)
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符
合題目要求的
3+z
1.------=()
1+i
A.1+2/B.1-2/C.2+iD.2-i
2.設(shè)集合A={1,2,4},B={]x2-4x+機=()}.若AB={1},則8=()
A,{1,-3}B.{1,0}C,{1,3}D.Q5}
3.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百
2x+3y-3<0
5.設(shè)x,y滿足約束條件,2x—3y+3N0,則z=2x+y的最小值是()
y+320
A.-15B.-9C.1D.9
6.安排3名志愿者完成4項工作,每人至少完成1項,每項工作由1人完成,則不同的安排方式共
有()
A.12種B.18種C.24種D.36種
7.甲、乙、丙、丁四位同學(xué)一起去向老師詢問成語競賽的成績.老師說:你們四人中有2位優(yōu)秀,
2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家
說:我還是不知道我的成績.根據(jù)以上信息,則()
A.乙可以知道四人的成績[開始]
B.丁可以知道四人的成績
/輸入a/
C.乙、丁可以知道對方的成績
D.乙、丁可以知道自己的成績
8.執(zhí)行右面的程序框圖,如果輸入的。=-1,則輸出的
S=()
A.2B.3C.4D.5
Y2丫2
9.若雙曲線C:—一二=1(。>0,6>0)的一條漸
近線被圓G-2>+>2=4所截得的弦長為2,則c的
離心率為()
[結(jié)束]
A.2B.6C.6D.2f
10.若x=-2是函數(shù)/(》)=(4+辦-1)分-「的極值點,則/(x)的極小值為()
A.-lB.-2<?-3C.5e-3D.l
U?已知直三棱柱ABC-ARC¥NABC=12。,AB=2,BC=CC「1,則異面直線AB1
與Eg所成角的余弦值為()
A.
25
12.已知AABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點,則PA-(P8+PC)的最小值是
()
c34,
A.—2B.——C.——D.-1
23
二、填空題:本題共4小題,每小題5分,共20分。
13.一批產(chǎn)品的二等品率為OS,從這批產(chǎn)品中每次隨機取一件,有放回地抽取10。次,X表示抽
到的二等品件數(shù),則DX=.
函數(shù)c兀
14,/(x)=sin2x+v/Jcosx—-XG0,y)的最大值是.
4
15.等差數(shù)列M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年煙臺市青年干部人才“菁英計劃”選聘(濱州醫(yī)學(xué)院)筆試模擬試題及答案解析
- 2026云南怒江州福貢縣機關(guān)事務(wù)服務(wù)中心招聘行政中心安保人員1人筆試備考試題及答案解析
- 2025廣東深圳市龍華區(qū)委辦公室招聘專業(yè)聘用人員3人考試歷年真題匯編附答案
- 2025年湖南衡陽衡山縣社區(qū)專職網(wǎng)格員、警務(wù)輔助人員招聘47人(公共基礎(chǔ)知識)測試題附答案
- 2025年齊齊哈爾龍江縣中醫(yī)醫(yī)院招聘編外工作人員11人考試備考題庫附答案
- 2025江西南昌安義縣社會福利院招聘工作人員3人備考題庫附答案
- 2025年普洱市思茅區(qū)醫(yī)療衛(wèi)生行業(yè)編制外人員招聘(22人)參考題庫附答案
- 2026貴州錦屏縣中醫(yī)醫(yī)院第一次招聘編外工作人員筆試備考題庫及答案解析
- 2026浙江嵊泗縣融媒體中心招聘3人筆試備考題庫及答案解析
- 2026年玉溪市紅塔區(qū)李棋街道萬裕社區(qū)社區(qū)專職網(wǎng)格員招聘(3人)筆試參考題庫及答案解析
- DZ∕T 0248-2014 巖石地球化學(xué)測量技術(shù)規(guī)程(正式版)
- JTJ-T-257-1996塑料排水板質(zhì)量檢驗標(biāo)準(zhǔn)-PDF解密
- 殘疾人法律維權(quán)知識講座
- 火力發(fā)電廠機組A級檢修監(jiān)理大綱
- 瀝青維護工程投標(biāo)方案技術(shù)標(biāo)
- 水電站建筑物課程設(shè)計
- 兒童行為量表(CBCL)(可打印)
- 硒功能與作用-課件
- 《英語教師職業(yè)技能訓(xùn)練簡明教程》全冊配套優(yōu)質(zhì)教學(xué)課件
- DB53∕T 1034-2021 公路隧道隱蔽工程無損檢測技術(shù)規(guī)程
- DB32∕T 2349-2013 楊樹一元立木材積表
評論
0/150
提交評論