2024年高考數(shù)學(xué)重難點(diǎn)突破第18講 泰勒展開解密放縮法和高考命題方法(原卷版)_第1頁(yè)
2024年高考數(shù)學(xué)重難點(diǎn)突破第18講 泰勒展開解密放縮法和高考命題方法(原卷版)_第2頁(yè)
2024年高考數(shù)學(xué)重難點(diǎn)突破第18講 泰勒展開解密放縮法和高考命題方法(原卷版)_第3頁(yè)
2024年高考數(shù)學(xué)重難點(diǎn)突破第18講 泰勒展開解密放縮法和高考命題方法(原卷版)_第4頁(yè)
2024年高考數(shù)學(xué)重難點(diǎn)突破第18講 泰勒展開解密放縮法和高考命題方法(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第18講泰勒展開解密放縮法和高考命題方法為何高考中總是考和這些超越函數(shù)呢?因?yàn)楦呖济}專家很多是大學(xué)老師,他們俯視高中數(shù)學(xué),一覽無(wú)遺.超越函數(shù)本質(zhì)上就是高等數(shù)學(xué)中的泰勒公式,即從某個(gè)點(diǎn)處,我們可以構(gòu)建一個(gè)多項(xiàng)式來(lái)近似函數(shù)在這一點(diǎn)的鄰域中的值.如果這個(gè)點(diǎn)是0,就是形式比較簡(jiǎn)單的麥克勞林公式.簡(jiǎn)而言之,它的功能就是把超越式近似表示為冪函數(shù).這也是放縮法的理論依據(jù),也是出題老師的出題角度,后面將在泰勒展開中專門講解如何命題,大家可先理解放縮法.泰勒展開公式及其應(yīng)用一、泰勒展開公式設(shè)函數(shù)在點(diǎn)處的某鄰域內(nèi)具有階導(dǎo)數(shù),則對(duì)該鄰域內(nèi)異于的任意點(diǎn),在與之間至少存在一點(diǎn),使得 余項(xiàng),上式稱為階泰勒公式.若,則泰勒公式稱為麥克勞林公式,其中為階無(wú)窮小,相當(dāng)于余項(xiàng),即.二、常用的初等函數(shù)的麥克勞林公式(1)(2)(3)(4)(5)【例1】按的三展開多項(xiàng)式.【例2】求函數(shù)的帶有皮亞諾型余項(xiàng)的階麥克勞林展開式.【解析】解法一,法二:【例3】求函數(shù)按的冪展開的帶有皮亞諾型余項(xiàng)的階泰勒公式.【解析】解法一:直接展開.法二:為對(duì)數(shù)函數(shù)時(shí)利用已知的結(jié)論.利用泰勒公式證明無(wú)參不等式泰勒展開證明無(wú)參不等式的一般步?驟:第一步:構(gòu)造函數(shù),并按泰勒公式展開函數(shù),即如果函數(shù)在定義域上有定義,且有階導(dǎo)數(shù)存在,,則,其中介于和間第二步:判定余項(xiàng)的正負(fù)號(hào),并去掉余項(xiàng),得不等式.在上述泰勒公式中,若余項(xiàng),則去掉余項(xiàng)可得若,則去掉余項(xiàng)可得【例1】當(dāng)時(shí),.【解析】解法一:法二:由泰勒公式得【例2】設(shè),證明:.【解析】證明法一:法二:【例3】證明:【解析】證明:【例4】證明不等式:.【解析】證明:泰勒探究放縮法本質(zhì)經(jīng)過(guò)對(duì)泰勒證明不等式的學(xué)習(xí),應(yīng)該體會(huì)到了泰勒公式的強(qiáng)大.我們?cè)诜趴s法那一節(jié)的所有不等式都是在泰勒展開的基礎(chǔ)上變形而來(lái)的,所以泰勒公式才是放縮法的核心,為什么這么說(shuō)呢?泰勒展開式的本質(zhì)上是將一個(gè)復(fù)雜的函數(shù)近似表示為一個(gè)多項(xiàng)式函數(shù),是一種函數(shù)逼近的思想,也就是我們所說(shuō)的放縮,下面我將用一個(gè)例子來(lái)探討這一近似逼近的思想,以及相關(guān)不等式的變形.【例】比較和的大小.【解析】令,按泰勒展開有.去掉余項(xiàng)可以得到不等式:.下面利用一般方法證明該不等式.證明:(1)設(shè),,則在上單調(diào)遞減.當(dāng)時(shí)取等號(hào).(2)設(shè),則在上單調(diào)遞減,∴,即有,當(dāng)時(shí)取等號(hào).綜上所述,有不等式:,當(dāng)時(shí)取等號(hào).上述常用對(duì)數(shù)不等式描述的函數(shù)位置關(guān)系如下圖所示.同理,我們可以從指數(shù)函數(shù)的麥克勞林展開人手,通過(guò)去余項(xiàng)變形的方式得到我們常用的不等式:對(duì)于函數(shù)在處的展開式如下:.(1)從此式出發(fā),可以變形演繹出一些十分重要的不等式.(1)式等號(hào)右邊取兩項(xiàng),則有.(2)(2)式兩邊取自然對(duì)數(shù)得.(3)(2)式中用替換得(4)式兩邊取自然對(duì)數(shù)得(5)式中用替換得.結(jié)合(3)式和(6)式得.(7)對(duì)(1)式等號(hào)右邊分別取三項(xiàng)、四項(xiàng),則有上述不等式(2)到(9)式,當(dāng)且僅當(dāng)時(shí)取等號(hào).讀者可以翻到前面關(guān)于“放縮法”的章節(jié),試試看利用泰勒展開得到其他常用的不等式.利用泰勒放縮證明含參不等式在不等式恒成立中,我們通過(guò)泰勒展開放縮來(lái)大大簡(jiǎn)化計(jì)算,但前面也說(shuō)過(guò),泰勒展開放縮是一種近似計(jì)算,所求的范圍只能是必要性范圍,一般來(lái)說(shuō),會(huì)比直接求解的范圍要大,所以需要進(jìn)一步用常規(guī)方法驗(yàn)證,但這里也可以簡(jiǎn)化了討論的范圍,方便計(jì)算,一般也可以得到最終的范圍.【例1】已知函數(shù),證明:當(dāng)時(shí),.【解析】解法一:法二:泰勒展開法【例2】設(shè)函數(shù),若當(dāng)時(shí),求的取值范圍.【解析】【例3】設(shè)函數(shù).其中是的導(dǎo)函數(shù),若恒成立,求實(shí)數(shù)的取值范圍.【解析】第一步:泰勒展開放縮得必要性范

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論