版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東聊城市陽谷實驗中學2024年中考數(shù)學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°2.下列4個數(shù):,,π,()0,其中無理數(shù)是()A. B. C.π D.()03.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分4.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<15.下列實數(shù)中,為無理數(shù)的是()A. B. C.﹣5 D.0.31566.如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,
將剪下的扇形作為一個圓錐側面,如果圓錐的高為,則這塊圓形紙片的直徑為(
)A.12cm B.20cm C.24cm D.28cm7.我國“神七”在2008年9月26日順利升空,宇航員在27日下午4點30分在距離地球表面423公里的太空中完成了太空行走,這是我國航天事業(yè)的又一歷史性時刻.將423公里用科學記數(shù)法表示應為()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×1068.已知:a、b是不等于0的實數(shù),2a=3b,那么下列等式中正確的是()A.ab=23 B.a9.如圖的立體圖形,從左面看可能是()A. B.C. D.10.已知函數(shù)y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥011.等腰三角形一邊長等于5,一邊長等于10,它的周長是()A.20 B.25 C.20或25 D.1512.方程2x2﹣x﹣3=0的兩個根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.14.若一元二次方程x2﹣2x﹣m=0無實數(shù)根,則一次函數(shù)y=(m+1)x+m﹣1的圖象不經過第_____象限.15.分解因式x2﹣x=_______________________16.如果一個三角形兩邊為3cm,7cm,且第三邊為奇數(shù),則三角形的周長是_________.17.的算術平方根為______.18.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉中心順時針旋轉后得到ΔA′B′C′,且點A在A′B′上,則旋轉角為________________°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結論)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關系.20.(6分)計算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點C、D分別落在點M、N的位置,發(fā)現(xiàn)∠EFM=2∠BFM,求∠EFC的度數(shù).21.(6分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.22.(8分)在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關系是________.23.(8分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對應值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列結論:①ac<1;②當x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結論是.24.(10分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點D是點C關于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.25.(10分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.26.(12分)已知關于的二次函數(shù)(1)當時,求該函數(shù)圖像的頂點坐標.(2)在(1)條件下,為該函數(shù)圖像上的一點,若關于原點的對稱點也落在該函數(shù)圖像上,求的值(3)當函數(shù)的圖像經過點(1,0)時,若是該函數(shù)圖像上的兩點,試比較與的大小.27.(12分)小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去揚州馬可波羅花世界游玩.小明和小剛都在本周日上午去游玩的概率為________;求他們三人在同一個半天去游玩的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質及三角形內角和定理,解題的關鍵是先根據(jù)平行線的性質求出∠C,再由CD=CE得出∠D=∠CED,由三角形內角和定理求出∠D.2、C【解析】=3,是無限循環(huán)小數(shù),π是無限不循環(huán)小數(shù),,所以π是無理數(shù),故選C.3、D【解析】
解:總人數(shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術平均數(shù),掌握概念正確計算是關鍵.4、C【解析】
將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.5、B【解析】
根據(jù)無理數(shù)的定義解答即可.【詳解】選項A、是分數(shù),是有理數(shù);選項B、是無理數(shù);選項C、﹣5為有理數(shù);選項D、0.3156是有理數(shù);故選B.【點睛】本題考查了無理數(shù)的判定,熟知無理數(shù)是無限不循環(huán)小數(shù)是解決問題的關鍵.6、C【解析】
設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質得到AB=R,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.7、C【解析】423公里=423000米=4.23×105米.故選C.8、B【解析】∵2a=3b,∴ab=3故選B.9、A【解析】
根據(jù)三視圖的性質即可解題.【詳解】解:根據(jù)三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.10、C【解析】試題分析:根據(jù)反比例函數(shù)的性質,再結合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質和知識,反比例函數(shù)y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減??;當k<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大11、B【解析】
題目中沒有明確腰和底,故要分情況討論,再結合三角形的三邊關系分析即可.【詳解】當5為腰時,三邊長為5、5、10,而,此時無法構成三角形;當5為底時,三邊長為5、10、10,此時可以構成三角形,它的周長故選B.12、A【解析】
利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.14、一【解析】∵一元二次方程x2-2x-m=0無實數(shù)根,
∴△=4+4m<0,解得m<-1,
∴m+1<0,m-1<0,
∴一次函數(shù)y=(m+1)x+m-1的圖象經過二三四象限,不經過第一象限.
故答案是:一.15、x(x-1)【解析】x2﹣x=x(x-1).故答案是:x(x-1).16、15cm、17cm、19cm.【解析】試題解析:設三角形的第三邊長為xcm,由題意得:7-3<x<7+3,即4<x<10,則x=5,7,9,三角形的周長:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考點:三角形三邊關系.17、【解析】
首先根據(jù)算術平方根的定義計算先=2,再求2的算術平方根即可.【詳解】∵=2,∴的算術平方根為.【點睛】本題考查了算術平方根,屬于簡單題,熟悉算數(shù)平方根的概念是解題關鍵.18、50度【解析】
由將△ACB繞點C順時針旋轉得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點C順時針旋轉得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉的性質、直角三角形的性質以及等腰三角形的性質.此題難度不大,注意掌握旋轉前后圖形的對應關系,注意數(shù)形結合思想的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)詳見解析;(3)【解析】
(1)利用等腰三角形的性質和三角形內角和即可得出結論;
(2)先判斷出OE=AC,即可得出OE=BD,即可得出結論;
(3)先判斷出△ABE是底角是30°的等腰三角形,即可構造直角三角形即可得出結論.【詳解】(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,(2)如圖②,連接與,交點為,連接四邊形是矩形(3)如圖3,過點做于點四邊形是矩形,是等邊三角形,由(2)知,在中,,【點睛】此題是四邊形綜合題,主要考查了矩形是性質,直角三角形的性質和判定,含30°角的直角三角形的性質,三角形的內角和公式,解(1)的關鍵是判斷出∠B=∠BAD,解(2)的關鍵是判斷出OE=AC,解(3)的關鍵是判斷出△ABE是底角為30°的等腰三角形,進而構造直角三角形.20、(1)﹣10;(2)∠EFC=72°.【解析】
(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計算即可;(2)根據(jù)折疊的性質得到一對角相等,再由已知角的關系求出結果即可.【詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【點睛】本題考查了實數(shù)的性質及平行線的性質,解題的關鍵是熟練掌握實數(shù)的運算法則及平行線的性質.21、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質得到,利用等腰三角形的性質得到∠BAC=∠MAN,根據(jù)相似三角形的性質即可得到結論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質、等邊三角形的性質、等腰三角形的性質、全等三角形的性質定理和判定定理、相似三角形的性質定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關鍵.22、見解析【解析】(1)如圖:(2)連接AD、CF,則這兩條線段之間的關系是AD=CF,且AD∥CF.23、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個根,正確,故③正確;﹣1<x<3時,ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結論正確的是①③④.故答案為①③④.【考點】二次函數(shù)的性質.24、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標,進而求得D的坐標,即可求得DH的長度,令y=0,求得A,B的坐標,然后證得△ACO∽△EAH,根據(jù)對應邊成比例求得EH的長,進繼而求得DE的長;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(﹣2,﹣),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點M作y軸的平行線交FH于點Q,設點M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2,開口向下,∴m=時,△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當KF′=KF″時,如圖3,點K在F′F″的垂直平分線上,所以K與B重合,坐標為(3,0),∴OK=3;2)當F′F″=F′K時,如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當F″F′=F″K時,如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質,等邊三角形的判定與性質,等腰三角形的性質等,分類討論的思想是解題的關鍵.25、證明見解析.【解析】
根據(jù)在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻材料運輸與儲存管理方案
- 防腐施工與環(huán)保協(xié)調方案
- 雨季施工土方防護方案
- 軟土地區(qū)土方施工方案
- 2026年酒店管理專業(yè)知識測試題庫
- 2026年中醫(yī)藥執(zhí)業(yè)醫(yī)師資格考試中藥知識與臨床應用
- 消防設施圖紙審核與修改方案
- 2026年程序員職業(yè)能力測試編程與算法題庫及答案
- 2026年股票市場分析與投資策略測試題
- 2026年電子商務專業(yè)基礎理論知識測試題
- 醫(yī)院辦公室管理PDCA案例
- 醫(yī)院裝飾裝修施工方案匯報
- 創(chuàng)傷急救四大技術
- 2025年計劃員崗位考試題及答案
- SY-T5051-2024鉆具穩(wěn)定器-石油天然氣行業(yè)標準
- 服裝廢品管理辦法
- 春節(jié)工地留守人員安全教育
- 部編版一年級語文下冊無紙化闖關測試 課件
- 醫(yī)院后勤采購集中采購計劃
- DB63∕T 2270-2024 公路建設項目智慧工地技術指南
- GA/T 2187-2024法庭科學整體分離痕跡檢驗規(guī)范
評論
0/150
提交評論