版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
PAGE
PAGE
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
15.QuantitativeDataAnalysis:DescriptiveStatistics
ChapterGoals
Thischapterisdividedintofivesections.Eachsectionisdesignedtohelpstudentsbetterunderstandtheprocessbywhichresearchersmovefromrawdatatomeaning.
? Thefirstsectionexplainsthefiveprimarymeasuresneededtoanalyzequantitativedata.
? Thesecondsectiondescribesthestartofthedataanalysisprocess,
focusingonhowtoensurethatdataisreliableenoughtoserveasthebasis
forsubsequentdecisions.
? ThethirdsectionshowshoweachofthespecifictypesofquestionsintroducedinChapter13areexaminedandanalyzed.
? Thefourthsectionshowshowtotakethelaststeptowarddatameaning,movingawayfromananalysisofthetotalsampleintoanalysesofsmallergroupsofrespondents.
? Thelastsectionbringsallofthepriorinformationtogetherthroughastep-by-stepdemonstrationoftheentiredataanalysisprocess.
NotestotheInstructor
TheChapterLectureprovidesaguidetokeytopicsandcontent.ThePowerPointslidesarenamed:davis_adresearch_ch15.ppt.
ChapterLecture
I.BasicMathandKeyMeasures
Slide15-
2
Slide15-
3
Fivebasicandeasytocomputemeasuresprovideallthemathneededtoderivemeaninginmostdataanalysissituations:percentage,averageormean,median,mode,andstandarddeviation.
A.Percentage
Thinkofascoreonanexam.Tocalculatepercentagedividenumberofcorrect
answersbytotalnumberofquestions,andthenmultiplyby100.Sixteencorrectanswersoutoftwentywouldgiveyouascoreof80%.
Slide15-
4
Slide15-
5
Slide15-
6
Slide15-
7
Slide15-
8
Slide15-
9
Useofpercentagesforanalysisofsurveydataworksexactlythesameway:dividenumberofpeoplegivingaparticularresponsebytotalnumberofpeopleansweringquestion.TableshowninSlide15-4showshowthisisdone.
? Firstcolumnshowsthepossibleanswerstothesurveyquestion,
? Secondcolumnshowsnumberofpeopleselectingeachoption,and
? Lastcolumnshowspercentageofpeopleselectingeachoption.Totalofthepercentagecolumnshouldalwaysaddupto100%.
Ifthesurveyusesoneoftheonlinesurveysites,thesitewillautomaticallyprovidepercentages.Slide15-5isexampleofasurveywith10respondents.Zoomerang’spresentationofresultsshowsthepercentageofrespondentsselectingeachoptionforeachquestion.
B.Average
Calculateanaverageforasurveyquestioninmuchsamewayasyoucalculateaclassaverage,exceptinthecaseofsurveyquestionswedividethetotalnumberofpointsforthequestionbythetotalnumberofpeopleansweringthequestion.ConsiderquestionshowninSlide15-6.
Eachresponseoptionhasbeenassignedavalue.Tenconsumersratethecommercialasfollows:1,2,3,2,3,4,42,1,2.Theaveragerelevanceratingwouldbe2.4,calculatedbydividingthesumofalloftheindividualscores,24,bythenumberofpeopleansweringquestion,10.
C.MedianandMode
Medianisanumberthatappearsinthemiddleofanorderedsetofdatawhenthescoresareorderedfromlowesttohighest.
Fivepeopleprovideage:21,23,25,26,99.Theaverageagewouldbe38.8.Butthisaverageseemsnottofitthedata,asnorespondenthasanagearound
39andinfactfouroutoffiveareaged26oryounger.Averageishighbecauseofindividualaged99.
Medianagewouldbe25;obtainedbyfirstputting/makingcertainscoresareinorder,thenfindingthescorethatisinthemiddle.Thisnumber(25)ismuchmorerepresentativeoftheagesinthedatasetversustheaverage.
Whenyouhaveanaveragethatisdistortedbyafeweitherveryhighorverylowscores,thenmedianoftenbecomesbetterwaytosummarizesetofscores.
Slide15-
10
Slide15-
11
Slide15-
12
Slide15-
13
Slide15-
14
Slide15-
15
? Whenyouhaveanoddnumberofscores,medianisthescoreexactlyinthemiddleoftheorderedsetofdata.
? Whenyouhaveanevennumberofscores,themedianistheaverageofthetwomiddlescores.
Modeisthenumberinasetofresponsesthatappearsmostoften.Modeisusefulwhenyouneedtoknowmostfrequentresponse.
ModefordatashowninSlide15-12wouldbe“1”representing“Agree.”
D.RelationshipofMean,MedianandMode
Mean,median,andmodeeachprovideadifferentinsightintoasetofscores’distribution.Imagine100studentstakeanexam.Distributionofexamscoresissymmetricalwhenmean,median,andmodearenearlyidentical.Inthesecases:(1)distributiontorightofmean,median,andmodeisanearmirrorimageofdistributiontotheleftofthesemeasuresand(2)majorityofscoresfallintothecenterofdistribution.Thisdistributionistypical“bellcurve.”Whendistributionis(orisnear)symmetricalthenmeanisanaccurateandpreferreddescriptorofdistribution.
Distributionsdonothavetobesymmetrical.
? Distributionsinwhichthevalueofthemodefallsbelowtheme-dianthatinturnfallsbelowmeanskewsleft.Distributionhasalargenumberofvaluesatlowerendofdistributionandfewvaluesatthehighendofdistribution.
? Distributioninwhichthevalueofthemodefallsabovemedianthatsubsequentlyfallsabovethemeanskewsright.Distributionhasalargenumberofvaluesathighendofdistributionandfewvaluesatlowendofdistribution.
Themoreskewedthedistribution,thelesswellthemeanprovidesagoodsummaryofthatdistribution.Asaresult,forheavilyskeweddistributions,eithermedianormodeisoftenpreferreddescriptorversusaverage.
E.StandardDeviation
Standarddeviationisameasureofdispersion.Dispersionreferstohowspreadoutorclusteredasetofscoresisaroundthemean.
Slide15-
16
Slide15-
17
Slide15-
ConsiderdatashowninSlide15-16.Datarepresentsfiftyconsumers’purchaseintentafterseeingoneofthreecommercials.Dataineachcolumnrepresentspercentageofselectingeachresponse.Dataonthebottomofthetablereportsmeanpurchaseintentforeachcommercial.
Meanpurchaseintentforeachcommercialisidenticalinspiteofthefactthatunderlyingdistributionsarequitedifferent.ResponsestoAd1areevenlyspreadoutamongresponseoptions.ResponsestoAd2fallexclusivelyattheendsofthepurchaseintentscale.ResponsestoAd3resembleabellcurve.
Standarddeviationisawaytounderstandandcomparedistributionsofscoreswithouthavingtoactuallyplotandexamineeachandeveryscore.Foranyparticularscale,thegreaterthestandarddeviation,thegreaterthedispersionofscoresandasaresult,thelessaccuratethemeanforsummarizingasetofscores.ThetableshowninSlide15-17addsstandarddeviation.
StandarddeviationissmallestforAd3,largerforAd1andmuchlargerforAd
2.Aresearcherwouldconcludethatunderlyingpatternsofresponsetothethreecommercialsareverydifferent,andasaresult,needstolookdeeperintotheresponsepattern.OnlyinthecaseofAd3isthemeanagoodsummary
measureofthedistribution.
Itisimportanttorememberthatincomparingstandarddeviations,anyparticularstandarddeviationisareflectionoftheunderlyingscale.Standarddeviationscannotbecomparedwhenscaleshavedifferentnumbersofoptions.
II.MakingCertainYouHaveGoodData
Successfuladvertisingandrelateddecisionsarebasedongood(i.e.,correctandappropriate)responses.Tomakecertaindatais“good”youmust“clean”yourdatapriortoconductinganyanalyses.
A.DataReview,DecisionsandEditing
Firststepinpreparingdataistocheckresponsestoeachquestion,lookingforquestionsthathavealargenumberofmissingresponsesorquestionsthathaveodd,inappropriate,orunexpectedresponses.Youcanperformthisbyexaminingeachquestion’spercentagedistributions.Youmustdecidewhichquestionsareproblematicandwhattodowitheach:acceptasis,eliminateoredit.
ConsiderinformationprovidedbyZoomerangforfourquestions.
? Question1focusesonbeeradvertiser’scompetition.Almostall
18
Slide15-
19
Slide15-
20
Slide15-
21
whoansweredquestion(90%)choseHeinekin.Whilethishighpercentagemightnotbeexpected,dataappearstobe“good”astheredoesnotappeartobeanyproblemwithquestionwordingorresponseoptions.Appropriatedecisionatthispointwouldbetoacceptandusedataasis.
? Question2showsthesamepatternofresponseasQuestion1.
Allrespondentschosejustoneresponse.Aclosereviewofthis
question’sresponseoptionsshowsthatthereweretypographicalerrors-thefinaltwooptionsshouldhaveread“unimportant”insteadof“important.”Asaresult,scaleisincorrectanddatafromthisquestionisnotuseable.
? Question3isaproblem,butforadifferentreason.Whiletenindividualscomprisetotalsampleonlytwoindividualsansweredthisquestion.Anyquestionthathasahighnumberof“noresponses”shouldbeeliminatedfromanalysis.
? Question4illustratesanadditionalproblem.Tworespondentsprovidedanswersthatseemunreasonable.Youcanexaminethetotalpatternofresponseforthesetwoindividuals:ifpatternseemsreasonableyoucanacceptdataasis;ifthepatternseemsreasonablebutthisonemeasureseemsoddorinconsistentyoucanrecodetheresponseas“missing”;orifthepatternofresponseisproblematicacrossanumberofquestions,youcaneliminatetherespondentfromthesample.
Examinationofdataonquestionlevelshouldbefollowedbyareviewofeachrespondent’sindividualpatternofresponse.Here,lookingforanyrespondentswhohavealargenumberofmissingoroddresponsesacrossallsurveyquestions.
ImagineacasewheretenrespondentsareaskedtorateYouTube.Analysisofeachquestionshowsarangeofresponseand80%oftotalsampleansweredeachquestions.Analysisonthislevelappearspositive.
Thingsaredifferent,however,onindividualrespondentlevel.
Slide15-21showsresponsesofeachrespondentonthefoursurveyquestions.Dataindicatesthatthefirstsixrespondentsansweredallofthequestionswhilerespondentsnineandtenonlyansweredhalfofthequestions.
? Researcherstypicallydeletefromsamplerespondentswhohavefailedtoansweralargenumberofquestions.
Additionally,responsesofrespondentsfiveandsixalsoappeartobeaproblem,aseachindividualgaveexactsameanswertoallquestions.
? Wheneveryansweristhesame,itisquitelikelythattherespondentdidnotgivethesurveyfullattentionandresponsesareprobablynotvalid.Theserespondentsshouldalsobeeliminatedpriortodataanalysis.
III.DataAnalysisforSpecificQuestionTypes
UsequestionsfromBeboresearchstudy.[MakecertainstudentshaveFigure
15.7availableforreference.]
A.Classification,ChecklistandOtherNominalLevelQuestions
Slide15-
22
Slide15-
23
Slide15-
24
Slide15-
25
Slide15-
26
Questions1through3arenominallevelquestions.Becausenumbersusedtocoderesponsestonominallevelquestionshavenointrinsicmeaning,averagesareinappropriate.Instead,mostcommonlyusepercentages(showninSlide15-
22).
Initialreportingofpercentagesshouldalwayspresentthedataintheformcollectedbysurveyquestion.Next,summarizedatainwaysthatdonotdirectlycorrespondtotheoriginalresponsecategories.Here,originalresponsecategoriesarecombinedinlogicalfashionandtotalpercentagesfornewcategoriesarepresented.
? Responsestotheeducationalstatusquestioncanberecomputedtoallowforaneasiertoseecomparisonofthosewhoareinanytypeofschoolversusnoschool,asshowninSlide15-23or(asshowninSlide
15-24)tocomparesizeofgroupswhoarecurrentlynotenrolled,enrolledinhighschoolandenrolledinanytypeofcollege.
B.ChecklistQuestions
Question4,achecklist,measuresindividuals’reactionstoadvertisingonBebo.Thefirststepinanalysiscalculatesthepercentageofrespondentswhochecked
eachitem.TableshowninSlide15-25providesthisdata,presentingdatainthesameorderasitemsappearedonquestionnaire.
Thetableaccuratelypresentsdata.But,becausethereisnologicalorganizationtoordering,itisdifficulttoseeoverallpatternofresponse.
? ThetableinSlide15-26fixestheproblembyorderingitemsbyabsolutelevelofselection,makingiteasiertoseewhichitemshaverelativelymoreorlessagreement.
Slide15-
27
Slide15-
28
Slide15-
29
Slide15-
30
? ThetableshowninSlide15-27alsofixesproblembygroupingpositiveandnegativeitemstogether,makingiteasiertoseewhichpositiveandnegativeitemshaverelativelymoreagreement.
Presentationofpercentagesforchecklistitemsisoftensufficientfordiscoveringoverallpatternsofresponse.Anadditionalcomputation,whichcanprovidedeeperinsightintorespondents’thoughtsandattitudes,requiresthat
theresearcher(1)manipulatetherawdatafile,andthen(2)examineandthenclassifyingeachrespondent’spatternofresponseaccordingtoapredeterminedsetofcriteria.
Givenbothpositiveandnegativeitemsonachecklist,foranyindividualoneofthreepatternsofresponseispossible:
? arespondentchecksonlypositiveoptions
? arespondentchecksonlynegativeoptions
? arespondentchecksbothpositiveandnegativeoptions
Distinguishingbetweenthesethreetypesofindividualsisimportant,becauseitallowstheresearchertoidentifytherelativepercentofrespondentswhoareentirelypositive,entirelynegativeorwhohavemixedfeelings.
SurveyQuestion5onthesurveyasksrespondentstochecktheirfeelingstowardadvertisingthatappearsonMyAOL’shomepage.Atfirstglance,responsestoBebo(frompriorquestion)andMyAOLappeartobesimilar,asshownintableinSlide15-29.
Withoutfurtheranalysis,theresearchermightconcludethatreactionstoadvertisingontwosites’homepagesareidentical.However,thisconclusionprovesfalsewhenyouexaminethepercentageofpeoplewhoareentirelypositive,entirelynegativeorhavemixedreactions.ThisanalysisshowninSlide15-30.
Analysisshowsthatreactionstoadvertisingonthetwositesareverydifferent.Thesameproportionofsamplehadentirelypositiveattitudestowardtheadvertising.But,mostoftheremainingreactionstoBeboweremixed,withafewindividualshavingentirelynegativeattitudes.ReactionstoMyAOLwereverydifferent,withfewindividualshavingmixedfeelingsandmostindividualshavingentirelynegativereactions.DataindicatesthatMyAOL’shomepageadvertisingisperceivedasbeingmuchmoreofaproblemthanBebo’shomepageadvertising.Theseinsightsintoconsumers’attitudesweremasked
byinitialanalysisofindividualitempercentages.
C.RankingandOtherOrdinalLevelQuestions
Question6isarankorderquestion.Onlypercentages(andmediansandmodes)
areappropriate.
Thefirststepinanalysisofrankingdataisthecreationofapercentagedistri-butionthatreportsthenumberofeachrankingassignedtoeachrankeditem.Inthiscasewewanttocounthowmany“1,”“2,”and“3”ranksweregiventoeachofsocialnetworkingsites.
Slide15-
31
Slide15-
32
Slide15-
33
Thetableshowsthat380peoplegaveBeboarankingof‘1',80peoplegaveitarankingof'2',and40peoplegaveitarankingof'3'.Sinceall500peopleinthesampleprovidedrankings,totalrankingsforeachsiteaddsuptoatotalof500.
Thenextstepinanalysisandpresentationofrankingdataistranslationofeachfrequencydistributionintoapercentagedistributionforeachrankeditem.Thisisdonebydividingeachnumber(ofresponses)inacolumnbythetotalresponsesforthecolumn.ShowninSlide15-32.Datainthistableisreadbothdown(bycolumn)andacross(byrow).
Readingfromtoptobottomofeachcolumnshowspatternofresponseforeachsiteindependentoftheothersites.
Readingacrosswithinarowcomparesacrosssites.
Oncethesummarychartiscreated,additionalsummarymeasurescanbecalculatedtosimplifydataandassistincommunicatingkeyfindings.AsshowninSlide15-33,youcanaddasummarylinetothetablewhichpresentstheresultsofacomputationthatsubtractsthepercentageofworstrankings(inthiscase‘3’rankings)fromthepercentageofbest(‘1’)rankingsinordertoobtainanoverallassessmentofpositivepreference.Newmeasureiscalled“NetBestRankings”The66%reportedforBebo,forexample,iscomputedby
subtractingthepercentageof“3”rankingsfromthepercentageof“1”rankings,inthiscase76-8.
SummarymeasureclearlyreinforcespriorconclusionthatBebohasmostpreferredhomepage:onlyBebohadmoreindividualsgivingita“best”versusa“worst”ranking.
D.RatingScalesandOtherIntervalLevelQuestions
Questions7to9areratingscales.Themostcommonwaytoreportintervalleveldataisthroughpercentsandaverages.
Slide15-
34
Slide15-
35
Slide15-
36
Slide15-
37
Slide15-
38
Thefirststepinanalysisiscalculationofpercentofrespondentsselectingeachresponseoption,andcalculationofanoverallaverageandstandarddeviation(asshowninSlide15-34).ThemajorityofrespondentswerepositivetowardBebo’shomepage.Theaverageisnearthevalueofthe“SlightlyAgree”responseoption.
Afterdetaileddatahasbeenreportedforeachresponseoption,datacanthenbesimplifiedtomakeunderlyingtrendseasiertosee.Oneapproachistocombinechoicesthataredirectionallyrelated,inthiscasepositive“agree”choicesandnegative“disagree”choices(asshowninSlide15-35).
Also,similartotheapproachtakenforrankingdata,youcansubtractpercentageofnegativesfrompositivesinordertoobtainameasureofoverallpositiveresponses.
Eachofpriorapproachesprovideaslightlydifferentlookattheresponsestoeachindividualquestion.Whenthereisasetofmultiple,relatedquestions,itisoftenusefultoprepareasummarytablethatpresentsthekeyfindings.The
tableshowninSlide15-37presentssummarymeasuresforBebowhenreportingtheresponsestoQuestions7to9.Thismakesitveryeasytoseerelativestrengthsandweaknesses.
E.ConstantSumandOtherRatioLevelQuestions
Question10isaconstantsumquestion.Percentagesandaverages,aswellasmediansandmodes,areappropriateforsummarizingresponsestothistypeofquestion.
Thefirststepiscreationofadistributionthatreportstheaveragenumberofpointsgiventoeachlisteditem.Distributionfor500respondentswhorankedimportanceofeachsiteattributeisshowninSlide15-38.Notethatinpreparationofthistable:(a)thesumaddstothenumberofpoints(100)notthenumberofrespondentsand(b)theitemsevaluatedhavebeenplacedindescendingorder(tomaketheunderlyingtrendeasiertosee)ratherthanorderinwhichitemsappearedonthequestionnaire.
Thetableshowsthattheabilitytopostpicturesandblogwereperceivedasthemostimportantbenefits,receivingnearlythesameamountofhighpoints.Abilitytopostvideosandinstantmessagewereseenastheleastimportant.Theresearchermightconcludethatthefocusoneitherpostingpicturesorbloggingcouldsafelybeselectedassiteattributethatshouldbepromoted.But,withoutadditionalanalyses,itwouldbepremature(andthuspotentiallydangerous)todoso.
Additionalanalysesmakecertainthataveragesdonotleadtoerroneous
conclusions.Theyrequireanexaminationofeachofthedistributions.Oneapproachgroupspointallocationsintolargergroups,notingthepercentageofthesamplethatfallsintoeachgroup.Whenperformingthisanalysis,focusshiftsfromtheaveragingofpointstoanexaminationofthesample’sallocationbehavior.Thiscancreatetwocategoriesofresponse:
? Extremelyimportant:Percentofsamplewhoallocatedmorethan75%
ofpointstoanattribute
? Extremelyunimportant:Percentofsamplewhoallocatedlessthan25%
ofpointstoanattribute
Slide15-
39
Slide15-
40
Slide15-
41
TheresultsofthisanalysisareshownintheSlide15-39,wherepercentagesreflectpercentageofrespondentsfallingintoeachcategory.
Thetableindicatesthatinspiteoftheroughlyequivalentaveragenumberofpointsgiventopostingpicturesandblogging,theunderlyingpatternofresponsepresentsaquitedifferentpicture.Respondentswereoverwhelmingly
infavorofpostingpictures,with74%ofthesamplegivingit75ormorepoints
andonly15%ofthesamplegivingit25orfewerpoints.Thepaatternforbloggingisquitedifferent,withrelativelyequalnumbersofpeoplefeelingthatitwasimportantandunimportant.Postingpicturesisclearlythemorepowerfulbenefit.
IV.TheImportanceofSubgroupAnalysis
Priorapproachesentailedexamining,summarizing,andreportingtheresultsforthetotalsample.Thisisoftenusefultoexamineandcompareresponsesofsmallergroupsinsample.
Analysisofsmallersubgroupsoftenprovidesdeeperinsightsintodatatrendsandprovidesabasisfordrawingimportantmeaningfromthedata.Slide15-40illustrateshowyoungerindividualsareextremelynegativewhileolderindividualsareextremelypositive.
Youcantakesubgroupanalysestoanylevelofdetail.Prioranalysiscomparedtwoagegroups.But,youcanzoominevenfurthertodetermineifpositivereactionsof30to39yearoldsvaryasafunctionofeducation.Inthismoredetailedanalysis,youcancompareopinionsofindividualsaged30to39withacollegeeducationandthoseaged30to39withoutacollegeeducation.TableshowninSlide15-41accomplishesthis,whereitappearsthat(withinthisagegroup)lesswell-educatedindividualsaremorepositivethanthosewithacollegeeducation.
Guidelinesforsubgroupanalysis:
Slide15-
42
Slide15-
43
Slide15-
44
? Thinkaboutthedatafromtheresearchend-user’sperspective.
Whatquestionsaretheylikelytoask?Whatfindingswillthey
findmostintriguing?Whatfindingsaretheyleastlikelyto
accept?Whatdepthofdetailisrequiredformanagementtomakefullyinformeddecisions?Oncequestionsareanswered,thenconductappropriatesubgroupanalysestoprovidedetails.
? Lookfortheunexpected.Becreativeinquestionsasked;don’tjustfocusontheobviousoranticipatedfindings.Trytofindvaluablemeaninginthedatabydiscoveringunexpectedtrendsandrelationshipsinsubgroupanalyses.
? Beopen-minded.Whenyouseesomethingunexpected,takeastepbackandaskwhyresultsmightbeastheyare.Asknewquestionsandreformulateoldquestions.Answerthesequestionswiththeappropriatesubgroupanalyses.
? Besensitivetosamplesize.Sizeofindividualsubgroupstypicallydeclinesasgroupsbecomemorenarrowlydefined.Bewaryofanalyzinggroupsthatcontainsmallnumberofindividuals.
V.DataAnalysisinAction
A.Situation
Researchpriortoproductiontoidentifycommercial’sstrengthsandweaknesses.Twentyrespondentsaremembersoftheproduct’stargetaudience.Thesurveyusesfivemeasurestotestreactionstothecommercial.Thedatacollectedbythesemeasures,includingdemographicinformation,are:
? Respondentage
? Respondentgender
? Ratingofpurchaseintentafterseeingthecommercial
? Ratingofcommercialmessagebelievability
? Ratingofcommercialmessageuniqueness
? Reactionstothecommercial(twochecklistitems)
Alldatawerecollectedafteranindividualviewedtestcommercial.
B.TheAnalysis
Datacollectedfrom20respondentsshowninSlide15-44where:
? Ageiscoded“1”or“2,”wherea“1”represents25to34yearsoldand
“2”represents35to49yearsold
? Genderiscoded“1”or“2,”where“1”representsawomananda“2”
representsaman.
? Ratingsofpurchaseintent,messagebelievabilityandmessageuniquenessareallonafive-pointscalewherehighernumbersindicatemorepositiveresponses.
? Checklistreactionsusean“x”toindicateanitemwaschecked.A
blankspaceindicatesthatanitemwasnotchecked.
Onewaytoapproachdataanalysisistoimaginetypesofquestionsendusersofresearchwillaskandthencarryoutnecessarycomputationstoanswerthesequestions.Sincethisisacommercialtest,mostfundamentalquestionlikelytobeaskedbythosewhodesignedthecommercialis:Howdidthecommercialdo?
Theanswertothisquestionrequiresanexaminationofallofthemeasuresforthetotalsample,usingdescriptivestatisticstosummarizeresults.Thisprovidesafirstlookathowallrespondentsreactedtocommercial.Appropriatedescriptivestatisticsare:
Slide15-
45
Slide15-
46
? Purchaseintent(interval):Mean,percentage,median,mode
? Believability(interval):Mean,percentage,median,mode
? Uniqueness(interval):Mean,percentage,median,mode
? Checklistitems(nominal):Percentage
Withthisinmind,thebottomtworowsofpriortable(nowshowninSlide15-
46)presentappropriatedescriptivestatisticsforalltwentyindividuals.
Averageshavebeencalculatedonlyforintervallevelmeasures,notforgenderandage,whichwillbeusedasclassificationvariables.
Averagesandpercentagesindicatethatthecommercialperformedfairlywell.Purchaseintentwasatmidpointofscale,messagebelievabilitywashigh,andmessageuniquenesswasatmidpointofscale.Mostrespondentsfoundthecommercialinterestingandlessthanone-thirdfounditconfusing.
Atthispointitwouldbeeasytothinkthatthejobisdone.But,thiswouldbewrongconclusion-notbecausecalculationswereincorrect,butbecauseanalysisfailedtoanticipateadditionalquestions.Areasonablenextquestiontoaskwouldbe:Didthecommercialworkequallywellamongallmembersofthetargetaudience?
Slide15-
47
Slide15-
48
Slide15-
ThetableinSlide15-47looksattheagesubgroupsdetermined.Itshowsoriginaldatasetdividedintotwoagegroups.Allinyoungergroup(thosecodedwitha“1”forage)havebeenplacedtogetherinonegroupwhileallinoldergroup(thosecodedwitha“2”forage)havealsobeengroupedtogether.Descriptivestatisticsarecalculatedforeachgroup.Thereappearstobenodifferenceincommercialperformancebyagegroup:
? Averagesforratingscalesareidentical(purchaseintentforbothagegroupsequals3.1;messagebelievabilityforbothagegroupsequals4.2;messageuniquenessforbothagegroupsequals3.1).
? Percentagesofrespondentsineachgroupwhosaythecommercialisinteresting(80%)and“confusing(30%)arethesame.
Itthereforeappearsthatthecommercia
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026江西省江鹽科技有限公司一批次招聘2人備考題庫(kù)及參考答案詳解
- 2025河南周口市鹿邑縣事業(yè)單位引進(jìn)高層次人才55人備考題庫(kù)及一套完整答案詳解
- 2026中國(guó)科協(xié)所屬單位面向社會(huì)招聘5人備考題庫(kù)及答案詳解(考點(diǎn)梳理)
- 2026河南鄭州市金水區(qū)第十七幼兒園招聘?jìng)淇碱}庫(kù)及完整答案詳解
- 2025廣東廣州市天河區(qū)事業(yè)單位招聘博士4人備考題庫(kù)及答案詳解(奪冠系列)
- 2026廣東深圳市福田區(qū)第四幼兒園招聘1人備考題庫(kù)及答案詳解參考
- 2026中國(guó)中醫(yī)科學(xué)院中醫(yī)藥數(shù)據(jù)中心招聘國(guó)內(nèi)高校應(yīng)屆畢業(yè)生(京外生源)2人備考題庫(kù)(提前批)及答案詳解(奪冠系列)
- 2026年地勘中心(中國(guó)非礦)成員單位招聘?jìng)淇碱}庫(kù)(一)(河北有崗)及完整答案詳解1套
- 2026河南平煤神馬人力資源有限公司招聘96人備考題庫(kù)完整答案詳解
- 2026年石獅市龜湖中心小學(xué)招聘合同教師備考題庫(kù)及答案詳解(考點(diǎn)梳理)
- 養(yǎng)老院老人生活設(shè)施管理制度
- (2025年)林業(yè)系統(tǒng)事業(yè)單位招聘考試《林業(yè)知識(shí)》真題庫(kù)與答案
- 2026年直播服務(wù)合同
- 掛靠取消協(xié)議書(shū)
- 哲學(xué)史重要名詞解析大全
- 銀行借款抵押合同范本
- 新生兒休克診療指南
- DB37-T4975-2025分布式光伏直采直控技術(shù)規(guī)范
- 兒童糖尿病的發(fā)病機(jī)制與個(gè)體化治療策略
- 水泥產(chǎn)品生產(chǎn)許可證實(shí)施細(xì)則2025
- 急性心梗合并急性心衰護(hù)理
評(píng)論
0/150
提交評(píng)論