版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年河北省涿州市實驗中學(xué)中考數(shù)學(xué)考前最后一卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.2.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或43.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內(nèi)任意一點(點E不在直線AB、CD、AC上),設(shè)∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數(shù)可能是()A.①②③ B.①②④ C.①③④ D.①②③④4.關(guān)于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.m<3 B.m>3 C.m≤3 D.m≥35.的倒數(shù)的絕對值是()A. B. C. D.6.若|a|=﹣a,則a為()A.a(chǎn)是負數(shù) B.a(chǎn)是正數(shù) C.a(chǎn)=0 D.負數(shù)或零7.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,8.已知圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關(guān)系是()A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定9.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形10.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π二、填空題(共7小題,每小題3分,滿分21分)11.用一個圓心角為120°,半徑為4的扇形作一個圓錐的側(cè)面,這個圓錐的底面圓的半徑為____.12.如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.13.如圖△EDB由△ABC繞點B逆時針旋轉(zhuǎn)而來,D點落在AC上,DE交AB于點F,若AB=AC,DB=BF,則AF與BF的比值為_____.14.如圖△ABC中,∠C=90°,AC=8cm,AB的垂直平分線MN交AC于D,連接BD,若cos∠BDC=,則BC的長為_____.15.如圖,平行四邊形ABCD中,AB=AC=4,AB⊥AC,O是對角線的交點,若⊙O過A、C兩點,則圖中陰影部分的面積之和為_____.16.已知一個斜坡的坡度,那么該斜坡的坡角的度數(shù)是______.17.如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.三、解答題(共7小題,滿分69分)18.(10分)如圖,兩座建筑物的水平距離BC為40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結(jié)果保留小數(shù)點后一位).參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.19.(5分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.(1)求a,b的值及反比例函數(shù)的解析式;(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標(biāo);(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.20.(8分)如圖,已知A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點.(1)若a=1,求反比例函數(shù)的解析式及b的值;(2)在(1)的條件下,根據(jù)圖象直接回答:當(dāng)x取何值時,反比例函數(shù)大于一次函數(shù)的值?(3)若a﹣b=4,求一次函數(shù)的函數(shù)解析式.21.(10分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內(nèi)的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關(guān)聯(lián)點”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點”有_____;(2)已知點E的橫坐標(biāo)是m,若點E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對角線交點Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,求n的取值范圍.22.(10分)如圖,直線與雙曲線相交于、兩點.(1),點坐標(biāo)為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標(biāo)23.(12分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關(guān)系,并證明.24.(14分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.①若設(shè)購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時所獲利潤最大?最大利潤是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.2、C【解析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得a1=-2,a2=1.
即a的值是1或-2.
故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.3、D【解析】
根據(jù)E點有4中情況,分四種情況討論分別畫出圖形,根據(jù)平行線的性質(zhì)與三角形外角定理求解.【詳解】E點有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數(shù)可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【點睛】此題主要考查平行線的性質(zhì)與外角定理,解題的關(guān)鍵是根據(jù)題意分情況討論.4、A【解析】分析:根據(jù)關(guān)于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根可得△=(-2)2-4m>0,求出m的取值范圍即可.詳解:∵關(guān)于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m>0,∴m<3,故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程沒有實數(shù)根.5、D【解析】
直接利用倒數(shù)的定義結(jié)合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關(guān)鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).6、D【解析】
根據(jù)絕對值的性質(zhì)解答.【詳解】解:當(dāng)a≤0時,|a|=-a,∴|a|=-a時,a為負數(shù)或零,故選D.【點睛】本題考查的是絕對值的性質(zhì),①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;②當(dāng)a是負有理數(shù)時,a的絕對值是它的相反數(shù)-a;③當(dāng)a是零時,a的絕對值是零.7、A【解析】
首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.8、B.【解析】試題解析:∵OP=5,∴根據(jù)點到圓心的距離等于半徑,則知點在圓上.故選B.考點:1.點與圓的位置關(guān)系;2.坐標(biāo)與圖形性質(zhì).9、C【解析】
任何多邊形的外角和是360°,用360°除以一個外角度數(shù)即可求得多邊形的邊數(shù).【詳解】360°÷72°=1,則多邊形的邊數(shù)是1.故選C.【點睛】本題主要考查了多邊形的外角和定理,已知外角求邊數(shù)的這種方法是需要熟記的內(nèi)容.10、D【解析】
根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點睛】本題考查了實數(shù)大小的比較,理解任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:,解得r=.考點:弧長的計算.12、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉(zhuǎn)換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數(shù)y=(x>0)的圖象上,點A,B的橫坐標(biāo)分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點睛】本題考查反比例函數(shù)的性質(zhì),k的幾何意義.能夠?qū)⑷切蚊娣e進行合理的轉(zhuǎn)換是解題的關(guān)鍵.13、5【解析】
先利用旋轉(zhuǎn)的性質(zhì)得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和定理證明∠ABD=∠A,則BD=AD,然后證明△BDC∽△ABC,則利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF與BF的比值.【詳解】∵如圖△EDB由△ABC繞點B逆時針旋轉(zhuǎn)而來,D點落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF?AF-BF2=0,∴AF=﹣1+52BF,即AF與BF的比值為【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、相似三角形的性質(zhì),熟練掌握這些知識點并靈活運用是解題的關(guān)鍵.14、4【解析】試題解析:∵可∴設(shè)DC=3x,BD=5x,又∵MN是線段AB的垂直平分線,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案為:4cm.15、1.【解析】
∵∠AOB=∠COD,∴S陰影=S△AOB.∵四邊形ABCD是平行四邊形,∴OA=AC=×1=2.∵AB⊥AC,∴S陰影=S△AOB=OA?AB=×2×1=1.【點睛】本題考查了扇形面積的計算.16、【解析】
坡度=坡角的正切值,據(jù)此直接解答.【詳解】解:∵,∴坡角=30°.【點睛】此題主要考查學(xué)生對坡度及坡角的理解及掌握.17、2.1【解析】
根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=1cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.1cm,故答案為2.1.【點評】本題考查了勾股定理,矩形性質(zhì),三角形中位線的應(yīng)用,熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、建筑物AB的高度約為30.3m.【解析】分析:過點D作DE⊥AB,利用解直角三角形的計算解答即可.詳解:如圖,根據(jù)題意,BC=2,∠DCB=90°,∠ABC=90°.過點D作DE⊥AB,垂足為E,則∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四邊形DCBE為矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=,∴AE=DE?tan30°=.在Rt△DEB中,tan∠BDE=,∴BE=DE?tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度約為30.3m.點睛:考查解直角三角形的應(yīng)用﹣仰角俯角問題,要求學(xué)生能借助俯角構(gòu)造直角三角形并解直角三角形.19、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】
(1)利用點在直線上,將點的坐標(biāo)代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;(2)設(shè)出點P坐標(biāo),用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結(jié)論;(3)設(shè)出點M坐標(biāo),表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結(jié)論.【詳解】(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數(shù)y=上,∴k=-1×3=-3,∴反比例函數(shù)解析式為y=;(2)設(shè)點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設(shè)M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當(dāng)MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當(dāng)MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當(dāng)MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積的求法,等腰三角形的性質(zhì),用方程的思想解決問題是解本題的關(guān)鍵.20、(1)反比例函數(shù)的解析式為y=,b的值為﹣1;(1)當(dāng)x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)一次函數(shù)的解析式為y=x+1【解析】
(1)由題意得到A(1,4),設(shè)反比例函數(shù)的解析式為y=(k≠0),根據(jù)待定系數(shù)法即可得到反比例函數(shù)解析式為y=;再由點B(﹣4,b)在反比例函數(shù)的圖象上,得到b=﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),結(jié)合圖象即可得到答案;(3)設(shè)一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,因為A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,得到,解得p=8,a=1,b=﹣1,則A(1,4),B(﹣4,﹣1),由點A、點B在一次函數(shù)y=mx+n圖象上,得到,解得,即可得到答案.【詳解】(1)若a=1,則A(1,4),設(shè)反比例函數(shù)的解析式為y=(k≠0),∵點A在反比例函數(shù)的圖象上,∴4=,解得k=4,∴反比例函數(shù)解析式為y=;∵點B(﹣4,b)在反比例函數(shù)的圖象上,∴b==﹣1,即反比例函數(shù)的解析式為y=,b的值為﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),根據(jù)圖象:當(dāng)x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)設(shè)一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,∵A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,∴,即,①+②得4a﹣4b=1p,∵a﹣b=4,∴16=1p,解得p=8,把p=8代入①得4a=8,代入②得﹣4b=8,解得a=1,b=﹣1,∴A(1,4),B(﹣4,﹣1),∵點A、點B在一次函數(shù)y=mx+n圖象上,∴解得∴一次函數(shù)的解析式為y=x+1.【點睛】本題考查一次函數(shù)與反比例函數(shù),解題的關(guān)鍵是待定系數(shù)法求函數(shù)解析式.21、(1)正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)或;(3).【解析】
(1)正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關(guān)聯(lián)點”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標(biāo),再根據(jù)對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標(biāo);②M如圖4中,落在大⊙Q上,求出點Q的橫坐標(biāo)即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識,解題的關(guān)鍵是理解題意,學(xué)會尋找特殊位置解決數(shù)學(xué)問題,屬于中考壓軸題.22、(1),;(1),.【解析】
(1)由點A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標(biāo),再由點A的坐標(biāo)利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標(biāo);
(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進而求出P、Q兩點坐標(biāo).【詳解】解:(1)把點A(-1,a)代入一次函數(shù)y=x+4,
得:a=-1+4,解得:a=3,
∴點A的坐標(biāo)為(-1,3).
把點A(-1,3)代入反比例函數(shù)y=,
得:k=-3,
∴反比例函數(shù)的表達式y(tǒng)=-.
聯(lián)立兩個函數(shù)關(guān)系式成方程組得:解得:或∴點B的坐標(biāo)為(-3,1).
故答案為3,(-3,1);(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA,如圖所示.
∵點B、B′關(guān)于x軸對稱,點B的坐標(biāo)為(-3,1),
∴點B′的坐標(biāo)為(-3,-1),PB=PB′,
∵點A、A′關(guān)于y軸對稱,點A的坐標(biāo)為(-1,3),
∴點A′的坐標(biāo)為(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最?。?/p>
設(shè)直線A′B′的解析式為y=mx+n,
把A′,B′兩點代入得:解得:∴直線A′B′的解析式為y=x+1.
令y=0,則x+1=0,解得:x=-1,點P的坐標(biāo)為(-1,0),
令x=0,則y=1,點Q的坐標(biāo)為(0,1).【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題、待定系數(shù)法求函數(shù)解析式、軸對稱中的最短線路問題,解題的關(guān)鍵是:(1)聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點坐標(biāo);(1)根據(jù)軸對稱的性質(zhì)找出點P、Q的位置.本題屬于基礎(chǔ)題,難度適中,解決該題型題目時,聯(lián)立解析式成方程組,解方程組求出交點坐標(biāo)是關(guān)鍵.23、(1)①45°,②;(2)線段AH與AB+AC之間的數(shù)量關(guān)系:2AH=AB+AC.證明見解析.【解析】
(1)①先根據(jù)角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質(zhì)得∠B=75°,最后利用三角形內(nèi)角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)可得AG=AH,再由線段的和可得結(jié)論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教職工績效考核結(jié)果公示制度
- 2026廣東深圳理工大學(xué)合成生物學(xué)院胡強教授課題組招聘備考題庫及答案詳解(新)
- 罕見腫瘤的個體化治療綜合治療模式構(gòu)建
- 2026上半年貴州事業(yè)單位聯(lián)考貴州省紅十字會招聘1人備考題庫及完整答案詳解一套
- 長青集團2025年獎金制度
- 罕見腫瘤的個體化治療治療目標(biāo)設(shè)定
- 2026中國農(nóng)業(yè)大學(xué)人才招聘備考題庫及參考答案詳解一套
- 2026年北京林業(yè)大學(xué)附屬小學(xué)招聘2人備考題庫參考答案詳解
- 設(shè)計院設(shè)備所財務(wù)制度
- 支票領(lǐng)用內(nèi)部財務(wù)制度
- (2025年)電力交易員筆試題附答案
- 2026年婦聯(lián)崗位面試高頻考點對應(yīng)練習(xí)題及解析
- 北京通州產(chǎn)業(yè)服務(wù)有限公司招聘筆試備考題庫及答案解析
- 2026屆江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學(xué)生物高一上期末聯(lián)考模擬試題含解析
- 臨床協(xié)調(diào)員CRC年度總結(jié)
- 編鐘樂器市場洞察報告
- 負壓沖洗式口腔護理
- 山東省泰安市2024-2025學(xué)年高一物理下學(xué)期期末考試試題含解析
- 凈化車間液氮洗操作規(guī)程
- 《中電聯(lián)標(biāo)準-抽水蓄能電站鋼筋混凝土襯砌水道設(shè)計導(dǎo)則》
- 【可行性報告】2023年硫精砂項目可行性研究分析報告
評論
0/150
提交評論