2022年河南省商丘市莫華中學(xué)高二數(shù)學(xué)文上學(xué)期摸底試題含解析_第1頁(yè)
2022年河南省商丘市莫華中學(xué)高二數(shù)學(xué)文上學(xué)期摸底試題含解析_第2頁(yè)
2022年河南省商丘市莫華中學(xué)高二數(shù)學(xué)文上學(xué)期摸底試題含解析_第3頁(yè)
2022年河南省商丘市莫華中學(xué)高二數(shù)學(xué)文上學(xué)期摸底試題含解析_第4頁(yè)
2022年河南省商丘市莫華中學(xué)高二數(shù)學(xué)文上學(xué)期摸底試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年河南省商丘市莫華中學(xué)高二數(shù)學(xué)文上學(xué)期摸底試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.若x∈(﹣∞,﹣1]時(shí),不等式(m2﹣m)?4x﹣2x<0恒成立,則實(shí)數(shù)m的取值范圍是()A.(﹣2,1) B.(﹣4,3) C.(﹣1,2) D.(﹣3,4)參考答案:C【考點(diǎn)】7J:指、對(duì)數(shù)不等式的解法.【分析】由題意可得(m2﹣m)<在x∈(﹣∞,﹣1]時(shí)恒成立,則只要(m2﹣m)<的最小值,然后解不等式可m的范圍【解答】解:∵(m2﹣m)4x﹣2x<0在x∈(﹣∞,﹣1]時(shí)恒成立∴(m2﹣m)<在x∈(﹣∞,﹣1]時(shí)恒成立由于f(x)=在x∈(﹣∞,﹣1]時(shí)單調(diào)遞減∵x≤﹣1,∴f(x)≥2∴m2﹣m<2∴﹣1<m<2故選C2.圖l是某縣參加2014年高考的學(xué)生身高條形統(tǒng)計(jì)圈,從左到右的各條形表示的學(xué)生人數(shù)

依次記為(如表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù)).圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖,現(xiàn)要統(tǒng)計(jì)身高在160~

180cm(含l60cm,不吉180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫(xiě)的條件是A.B

C.D.參考答案:B3.設(shè)m為一條直線,為兩個(gè)不同的平面,則下列命題正確的是(▲)A.若則 B.若則C.若則D.若則參考答案:C4.已知f(x)=ex+2xf′(1),則f′(0)等于()A.1+2e B.1﹣2e C.﹣2e D.2e參考答案:B【考點(diǎn)】導(dǎo)數(shù)的運(yùn)算.【分析】把給出的函數(shù)求導(dǎo)得其導(dǎo)函數(shù),在導(dǎo)函數(shù)解析式中取x=1可求f′(1)的值,繼而求出f′(0)的值.【解答】解:由f(x)=ex+2xf′(1),得:f′(x)=ex+2f′(1),取x=1得:f′(1)=e+2f′(1),所以,f′(1)=﹣e.故f′(0)=1﹣2f′(1)=1﹣2e,故答案為:B.5.已知雙曲線的一個(gè)焦點(diǎn)與拋物線x2=20y的焦點(diǎn)重合,且其漸近線的方程為3x±4y=0,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.參考答案:C【考點(diǎn)】雙曲線的標(biāo)準(zhǔn)方程.【分析】根據(jù)拋物線方程,算出其焦點(diǎn)為F(0,5).由此設(shè)雙曲線的方程為,根據(jù)基本量的平方關(guān)系與漸近線方程的公式,建立關(guān)于a、b的方程組解出a、b的值,即可得到該雙曲線的標(biāo)準(zhǔn)方程.【解答】解:∵拋物線x2=20y中,2p=20,=5,∴拋物線的焦點(diǎn)為F(0,5),設(shè)雙曲線的方程為,∵雙曲線的一個(gè)焦點(diǎn)為F(0,5),且漸近線的方程為3x±4y=0即,∴,解得(舍負(fù)),可得該雙曲線的標(biāo)準(zhǔn)方程為.故選:C6.過(guò)點(diǎn)A(1,2)且與原點(diǎn)距離最大的直線方程是(

)A.x+2y-5=0

B.2x+y-4=0C.x+3y-7=0

D.x+3y-5=0參考答案:A7.某校有行政人員、教學(xué)人員和教輔人員共人,其中教學(xué)人員與教輔人員的比為,行政人員有人,現(xiàn)采取分層抽樣容量為的樣本,那么行政人員應(yīng)抽取的人數(shù)為(

)A.

B.

C.

D.參考答案:C8.極坐標(biāo)方程表示的曲線為(

)A

極點(diǎn)

B

極軸

C

一條直線

D

兩條相交直線參考答案:D略9.由代數(shù)式的乘法法則類(lèi)比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:①“mn=nm”類(lèi)比得到“”;②“(m+n)t=mt+nt”類(lèi)比得到“”;③“(m?n)t=m(n?t)”類(lèi)比得到“”;④“t≠0,mt=xt?m=x”類(lèi)比得到“”;⑤“|m?n|=|m|?|n|”類(lèi)比得到“”;⑥“”類(lèi)比得到“”.以上式子中,類(lèi)比得到的結(jié)論正確的個(gè)數(shù)是()A.1

B.2

C.3

D.4參考答案:B10.過(guò)兩直線x–y+1=0和x+y–=0的交點(diǎn),并與原點(diǎn)的距離等于1的直線共有(

)

A.0條

B.1條 C.2條

D.3條參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.已知空間四邊形,點(diǎn)分別為的中點(diǎn),且,用表示,則=

.參考答案:;略12.函數(shù)的單調(diào)遞減區(qū)間是.參考答案:(﹣∞,1]【考點(diǎn)】3G:復(fù)合函數(shù)的單調(diào)性.【分析】由復(fù)合函數(shù)的單調(diào)性可知函數(shù)的單調(diào)遞減區(qū)間為f(x)=x2﹣2x的單調(diào)遞減區(qū)間.【解答】解:設(shè)f(x)=x2﹣2x,則f(x)在(﹣∞,1]上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,又y=3x為R上的增函數(shù),∴函數(shù)在(﹣∞,1]上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.故答案為:(﹣∞,1].13.已知球面上有A、B、C三點(diǎn),如果AB=AC=BC=2,球心到面ABC的距離為1,那么球的體積

.參考答案:【考點(diǎn)】球的體積和表面積.【專題】綜合題;轉(zhuǎn)化思想;綜合法;空間位置關(guān)系與距離.【分析】由題意可知三角形ACB是等邊三角形,球心到平面ABC的距離為1,可求出球的半徑,然后求球的體積.【解答】解:由題意,AB=AC=BC=2,所以△ABC的外接圓的半徑為2,因?yàn)榍蛐牡狡矫鍭BC的距離為1,所以球的半徑是:R=,球的體積是:πR3=.故答案為:.【點(diǎn)評(píng)】本題考查球的內(nèi)接體問(wèn)題,考查學(xué)生空間想象能力,是中檔題.利用球半徑與球心O到平面ABC的距離的關(guān)系,是解好本題的前提.14.極坐標(biāo)系中,曲線和相交于點(diǎn),則線段的長(zhǎng)度為

.參考答案:

15.已知數(shù)列的前項(xiàng)和,求=_______。參考答案:略16.若,則此函數(shù)的圖像在點(diǎn)處的切線的斜率為

.參考答案:略17.函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值.若關(guān)于x的方程f(x)=k有三個(gè)根,則實(shí)數(shù)k的取值范圍-----------參考答案:(-4|3,28|3)略三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.(本題滿分8分)如圖,拋物線,圓,過(guò)拋物線焦點(diǎn)的直線交于兩點(diǎn),交于兩點(diǎn).

(Ⅰ)若,求直線的方程;(Ⅱ)求的值.參考答案:解:(Ⅰ)為拋物線的焦點(diǎn),由,得.由題易得直線的斜率存在且不為零,設(shè)直線,由得,.------(3分)又所以,解得,直線的方程為--------(5分)(Ⅱ)若與軸垂直,則;若與軸不垂直,則由(Ⅰ)知.

所以.------(8分)略19.若經(jīng)過(guò)點(diǎn)P(1﹣a,1+a)和Q(3,2a)的直線的傾斜角為鈍角,求實(shí)數(shù)a的取值范圍.參考答案:(﹣2,1)【考點(diǎn)】直線的傾斜角.【分析】由直線的傾斜角α為鈍角,能得出直線的斜率小于0,解不等式求出實(shí)數(shù)a的取值范圍;【解答】解:∵過(guò)P(1﹣a,1+a)和Q(3,2a)的直線的傾斜角α為鈍角,∴直線的斜率小于0,即<0,即,解得﹣2<a<1,故a的取值范圍為(﹣2,1).【點(diǎn)評(píng)】本題考查直線的斜率公式及直線的傾斜角與斜率的關(guān)系.20.已知在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸)中,曲線C2的方程為ρsin2θ=2pcosθ(p>0),曲線C1、C2交于A、B兩點(diǎn).(Ⅰ)若p=2且定點(diǎn)P(0,﹣4),求|PA|+|PB|的值;(Ⅱ)若|PA|,|AB|,|PB|成等比數(shù)列,求p的值.參考答案:【考點(diǎn)】QH:參數(shù)方程化成普通方程;Q4:簡(jiǎn)單曲線的極坐標(biāo)方程.【分析】(Ⅰ)曲線C2的方程為ρsin2θ=2pcosθ(p>0),即為ρ2sin2θ=2pρcosθ(p>0),利用互化公式可得直角坐標(biāo)方程.將曲線C1的參數(shù)方程(t為參數(shù))與拋物線方程聯(lián)立得:t+32=0,可得|PA|+|PB|=|t1|+|t2|=|t1+t2|.(Ⅱ)將曲線C1的參數(shù)方程與y2=2px聯(lián)立得:t2﹣2(4+p)t+32=0,又|PA|,|AB|,|PB|成等比數(shù)列,可得|AB|2=|PA||PB|,可得=|t1||t2|,即=5t1t2,利用根與系數(shù)的關(guān)系即可得出.【解答】解:(Ⅰ)∵曲線C2的方程為ρsin2θ=2pcosθ(p>0),即為ρ2sin2θ=2pρcosθ(p>0),∴曲線C2的直角坐標(biāo)方程為y2=2px,p>2.又已知p=2,∴曲線C2的直角坐標(biāo)方程為y2=4x.將曲線C1的參數(shù)方程(t為參數(shù))與y2=4x聯(lián)立得:t+32=0,由于△=﹣4×32>0,設(shè)方程兩根為t1,t2,∴t1+t2=12,t1?t2=32,∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=12.(Ⅱ)將曲線C1的參數(shù)方程(t為參數(shù))與y2=2px聯(lián)立得:t2﹣2(4+p)t+32=0,由于△=﹣4×32=8(p2+8p)>0,∴t1+t2=2(4+p),t1?t2=32,又|PA|,|AB|,|PB|成等比數(shù)列,∴|AB|2=|PA||PB,∴=|t1||t2|,∴=5t1t2,∴=5×32,∴p2+8p﹣4=0,解得:p=﹣4,又p>0,∴p=﹣4+2,∴當(dāng)|PA|,|AB|,|PB|成等比數(shù)列時(shí),p的值為﹣4+2.[選修4-5:不等式選講選做]23.21.如圖,已知三棱柱的側(cè)棱與底面垂直,,,,分別是,的中點(diǎn),點(diǎn)在直線上,且;(1)證明:無(wú)論取何值,總有;(2)當(dāng)取何值時(shí),直線與平面所成的角最大?并求該角取最大值時(shí)的正切值;(3)是否存在點(diǎn),使得平面與平面所成的二面角為30o,若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.參考答案:證明:(1)如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,則A1(0,0,1),B1(1,0,1),M(0,1,),N(,0),,C

N

(1)∵,∴∴無(wú)論取何值,AM⊥PN………………4分(2)∵(0,0,1)是平面ABC的一個(gè)法向量。∴sinθ=|cos<|=∴當(dāng)=時(shí),θ取得最大值,此時(shí)sinθ=,cosθ=,tanθ=2

………8分(3)假設(shè)存在,則,設(shè)是平面PMN的一個(gè)法向量。則得令x=3,得y=1+2,z=2-2∴∴|cos<>|=化簡(jiǎn)得4∵△=100-4413=-108<0∴方程(*)無(wú)解∴不存在點(diǎn)P使得平面PMN與平面ABC所成的二面角為30o22.已知某廠生產(chǎn)x件產(chǎn)品的總成本為f(x)=25000+200x+(元).(1)要使生產(chǎn)x件產(chǎn)品的平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?(2)若產(chǎn)品以每件500元售出,要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件產(chǎn)品?參考答案:【考點(diǎn)】函數(shù)模型的選擇與應(yīng)用.【專題】應(yīng)用題.【分析】(1)先根據(jù)題意設(shè)生產(chǎn)x件產(chǎn)品的平均成本為y元,再結(jié)合平均成本的含義得出函數(shù)y的表達(dá)式,最后利用導(dǎo)數(shù)求出此函數(shù)的最小值即可;(2)先寫(xiě)出利潤(rùn)函數(shù)的解析式,再利用導(dǎo)數(shù)求出此函數(shù)的極值,從而得出函數(shù)的最大值,即可解決問(wèn)題:要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件產(chǎn)品.【解答】解:(1)設(shè)生產(chǎn)x件產(chǎn)品的平均成本為y元,則(2分)(3分)令y'=0,得x1=1000,x2=﹣1000(舍去)(4分)當(dāng)x∈(0,1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論