版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年吉林省松原寧江區(qū)五校聯(lián)考中考數(shù)學(xué)猜題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結(jié)論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=2.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.3.剪紙是我國傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.4.已知點A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數(shù)y=的圖象上,則y1、y2、y3的大小關(guān)系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y25.已知為單位向量,=,那么下列結(jié)論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反6.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米7.解分式方程﹣3=時,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=48.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:19.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為210.二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.11.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.512.為了解當(dāng)?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結(jié)果如下(單位:﹣6,﹣1,x,2,﹣1,1.若這組數(shù)據(jù)的中位數(shù)是﹣1,則下列結(jié)論錯誤的是()A.方差是8 B.極差是9 C.眾數(shù)是﹣1 D.平均數(shù)是﹣1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一副直角三角板疊放如圖所示,現(xiàn)將含45°角的三角板固定不動,把含30°角的三角板繞直角頂點沿逆時針方向勻速旋轉(zhuǎn)一周,第一秒旋轉(zhuǎn)5°,第二秒旋轉(zhuǎn)10°,第三秒旋轉(zhuǎn)5°,第四秒旋轉(zhuǎn)10°,…按此規(guī)律,當(dāng)兩塊三角板的斜邊平行時,則三角板旋轉(zhuǎn)運動的時間為_____.14.如圖,在平面直角坐標(biāo)系xOy中,點A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點P順時針旋轉(zhuǎn)30°得到線段PC,連接BC.若點A的坐標(biāo)為(﹣1,0),則線段BC的長為_____.15.已知,在同一平面內(nèi),∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點E,那么∠AEB的度數(shù)為__________.16.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)17.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.18.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)臺州市某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示:(1)求日銷售量y與時間t的函數(shù)關(guān)系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?20.(6分)(1)計算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.21.(6分)先化簡,再求值:(),其中=22.(8分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.23.(8分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.(1)問題發(fā)現(xiàn)①當(dāng)θ=0°時,=;②當(dāng)θ=180°時,=.(2)拓展探究試判斷:當(dāng)0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉(zhuǎn)過程中,BE的最大值為;②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為.24.(10分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標(biāo);(2)當(dāng)△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當(dāng)△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標(biāo).25.(10分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.26.(12分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標(biāo)為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標(biāo).27.(12分)為了解某校學(xué)生的身高情況,隨機抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據(jù)圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數(shù)為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學(xué)生約有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故B正確,不符合題意;
根據(jù)相似三角形的判定即可求解,故C正確,不符合題意;
由△BAE∽△ADC,得到CD與AD的大小關(guān)系,根據(jù)正切函數(shù)可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設(shè)AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質(zhì),解直角三角形,掌握相似三角形的判定方法是解題的關(guān)鍵.2、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C3、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.4、B【解析】
分別把各點代入反比例函數(shù)的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數(shù)y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,反比例函數(shù)值的大小比較,熟練掌握反比例函數(shù)圖象上的點的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.5、C【解析】
由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.【點睛】本題考查了向量的方向,是基礎(chǔ)題,較簡單.6、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應(yīng)用.7、B【解析】
方程兩邊同時乘以(x-2),轉(zhuǎn)化為整式方程,由此即可作出判斷.【詳解】方程兩邊同時乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.【點睛】本題考查了解分式方程,利用了轉(zhuǎn)化的思想,熟練掌握解分式方程的一般步驟以及注意事項是解題的關(guān)鍵.8、B【解析】
可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.9、A【解析】
根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學(xué)生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.10、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負(fù)數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點縱坐標(biāo)取到最大值,結(jié)合圖象最小值只能由x=m時求出.②頂點縱坐標(biāo)取不到最大值,結(jié)合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當(dāng)m≤0≤x≤n<1時,當(dāng)x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當(dāng)m≤0≤x≤1≤n時,當(dāng)x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.11、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B12、A【解析】根據(jù)題意可知x=-1,
平均數(shù)=(-6-1-1-1+2+1)÷6=-1,
∵數(shù)據(jù)-1出現(xiàn)兩次最多,
∴眾數(shù)為-1,
極差=1-(-6)=2,
方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、14s或38s.【解析】試題解析:分兩種情況進(jìn)行討論:如圖:旋轉(zhuǎn)的度數(shù)為:每兩秒旋轉(zhuǎn)如圖:旋轉(zhuǎn)的度數(shù)為:每兩秒旋轉(zhuǎn)故答案為14s或38s.14、22【解析】
只要證明△PBC是等腰直角三角形即可解決問題.【詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【點睛】本題考查翻折變換、坐標(biāo)與圖形的變化、等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是證明△PBC是等腰直角三角形.15、65°或25°【解析】
首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,
∴∠EAD=∠EAB,
∵AD∥BC,
∴∠EAD=∠AEB,
∴∠BAD=∠AEB,
∵∠ABC=50°,
∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,
∴∠EAD=∠EAB=,
∵AD∥BC,
∴∠AEB=∠DAE=,∠DAB=∠ABC,
∵∠ABC=50°,
∴∠AEB=×50°=25°.
故答案為:65°或25°.【點睛】本題考查平行線的性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.16、可添∠ABD=∠CBD或AD=CD.【解析】
由AB=BC結(jié)合圖形可知這兩個三角形有兩組邊對應(yīng)相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結(jié)合圖形與已知條件靈活應(yīng)用全等三角形的判定方法是解題的關(guān)鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.17、22.5【解析】
連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,
∵OE⊥AB,
∴∠EOB=90°,
∵點C為的中點,
∴∠BOC=45°,
∵OA=OC,
∴∠A=∠ACO=×45°=22.5°,
故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.18、3【解析】∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案為:3.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣2t+200(1≤t≤80,t為整數(shù));(2)第30天的日銷售利潤最大,最大利潤為2450元;(3)共有21天符合條件.【解析】
(1)根據(jù)函數(shù)圖象,設(shè)解析式為y=kt+b,將(1,198)、(80,40)代入,利用待定系數(shù)法求解可得;
(2)設(shè)日銷售利潤為w,根據(jù)“總利潤=每千克利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)分別求得最值即可判斷;
(3)求出w=2400時t的值,結(jié)合函數(shù)圖象即可得出答案;【詳解】(1)設(shè)解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t為整數(shù));(2)設(shè)日銷售利潤為w,則w=(p﹣6)y,當(dāng)1≤t≤80時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當(dāng)t=30時,w最大=2450;∴第30天的日銷售利潤最大,最大利潤為2450元.(3)由(2)得:當(dāng)1≤t≤80時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.【點睛】本題考查二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)求函數(shù)解析式、由相等關(guān)系得出利潤的函數(shù)解析式、利用二次函數(shù)的圖象解不等式及二次函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.20、(1);(2);【解析】
(1)根據(jù)負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以解答本題.【詳解】解:(1)原式(2)原式【點睛】本題考查分式的混合運算、實數(shù)的運算、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪,解答本題的關(guān)鍵是明確它們各自的計算方法.21、【解析】分析:首先將括號里面的分式進(jìn)行通分,然后將分式的分子和分母進(jìn)行因式分解,然后將除法改成乘法進(jìn)行約分化簡,最后將a的值代入化簡后的式子得出答案.詳解:原式=將原式=點睛:本題主要考查的是分式的化簡求值,屬于簡單題型.解決這個問題的關(guān)鍵就是就是將括號里面的分式進(jìn)行化成同分母.22、(1)(2)﹣1<x<0或x>1.(3)四邊形OABC是平行四邊形;理由見解析.【解析】
(1)設(shè)反比例函數(shù)的解析式為(k>0),然后根據(jù)條件求出A點坐標(biāo),再求出k的值,進(jìn)而求出反比例函數(shù)的解析式.(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;(3)首先求出OA的長度,結(jié)合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC【詳解】解:(1)設(shè)反比例函數(shù)的解析式為(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵點A在上,∴,解得k=2.,∴反比例函數(shù)的解析式為.(2)觀察圖象可知正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍為﹣1<x<0或x>1.(3)四邊形OABC是菱形.證明如下:∵A(﹣1,﹣2),∴.由題意知:CB∥OA且CB=,∴CB=OA.∴四邊形OABC是平行四邊形.∵C(2,n)在上,∴.∴C(2,1).∴.∴OC=OA.∴平行四邊形OABC是菱形.23、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解析】
(1)①先判斷出DE∥CB,進(jìn)而得出比例式,代值即可得出結(jié)論;②先得出DE∥BC,即可得出,,再用比例的性質(zhì)即可得出結(jié)論;(2)先∠CAD=∠BAE,進(jìn)而判斷出△ADC∽△AEB即可得出結(jié)論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結(jié)論即可得出CD.【詳解】解:(1)①當(dāng)θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當(dāng)θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當(dāng)0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當(dāng)點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當(dāng)點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據(jù)勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當(dāng)點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據(jù)勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【點睛】此題是相似形綜合題,主要考查了等腰直角三角形的性質(zhì)和判定,勾股定理,相似三角形的判定和性質(zhì),比例的基本性質(zhì)及分類討論的數(shù)學(xué)思想,解(1)的關(guān)鍵是得出DE∥BC,解(2)的關(guān)鍵是判斷出△ADC∽△AEB,解(3)關(guān)鍵是作出圖形求出BD,是一道中等難度的題目.24、(1)y=x2﹣x,點D的坐標(biāo)為(2,﹣);(2)t=2;(3)M點的坐標(biāo)為(2,0)或(6,0).【解析】
(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標(biāo);(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當(dāng)時,△AME∽△COD,即|t-4|:4=|t2-t|:,當(dāng)時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應(yīng)的M點的坐標(biāo).【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標(biāo)為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當(dāng)CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當(dāng)時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標(biāo)為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當(dāng)時,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時M點坐標(biāo)為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點的坐標(biāo)為(2,0)或(6,0).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、平行四邊形的性質(zhì)和菱形的判定與性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);熟練掌握相似三角形的判定方法;會運用分類討論的思想解決數(shù)學(xué)問題.25、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出“至少有一人直行”的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩人之中至少有一人直行的結(jié)果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.26、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標(biāo)代入解析式中即可.(2)首先根據(jù)拋物線的解析式確定A點坐標(biāo),然后通過證明△ABC是直角三角形來推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo).(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標(biāo)代入解析式中即可.(2)通過求出A,B,C三點坐標(biāo),利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標(biāo).(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數(shù),從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2);∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中藥材凈選潤切工操作能力模擬考核試卷含答案
- 井下膠輪車司機崗前技能實操考核試卷含答案
- 毛衫套口工安全技能測試知識考核試卷含答案
- 感光材料乳劑熔化工安全知識能力考核試卷含答案
- 有機實芯電阻器、電位器制造工安全知識模擬考核試卷含答案
- 涂料涂覆工崗前崗位知識考核試卷含答案
- 果樹育苗工操作規(guī)程能力考核試卷含答案
- 天然氣開采工安全管理競賽考核試卷含答案
- 乙烯-醋酸乙烯共聚乳液(VAE)裝置操作工班組管理水平考核試卷含答案
- 中高頻爐工安全生產(chǎn)規(guī)范競賽考核試卷含答案
- (2025年標(biāo)準(zhǔn))演出免責(zé)協(xié)議書
- 2025年江西省公安機關(guān)人民警察特殊職位招錄考試(網(wǎng)絡(luò)安全)歷年參考題庫含答案詳解(5卷)
- 醫(yī)院藥房工作總結(jié)與計劃
- 企業(yè)安全教育培訓(xùn)模板
- 新媒體文案寫作教程(第二版)課件全套 項目1-9 新媒體文案基礎(chǔ)-小紅書文案寫作
- 低鉀血癥護(hù)理常規(guī)業(yè)務(wù)學(xué)習(xí)
- DB11-T 2423-2025 城市道路挖掘與修復(fù)技術(shù)規(guī)范
- 骨折病人心理護(hù)理
- GSP企業(yè)內(nèi)審課件
- 部編版語文九年級上冊知識期末復(fù)習(xí)集錦
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院印章使用與保管管理制度?
評論
0/150
提交評論