版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
阿里市重點中學2024屆八年級下冊數(shù)學期末調(diào)研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列窗花圖案中,是軸對稱圖形的是()A. B.C. D.2.已知二次函數(shù)(為常數(shù))的圖象與軸的一個交點為,則關于的一元二次方程的兩實數(shù)根是()A., B., C., D.,3.計算(﹣a)2?a3的結(jié)果正確的是()A.﹣a6 B.a(chǎn)6 C.﹣a5 D.a(chǎn)54.如圖,在中,,,,為上的動點,連接,以、為邊作平行四邊形,則長的最小值為()A. B. C. D.5.已知菱形的對角線,的長分別為和,則該菱形面積是().A.; B.; C.; D..6.順次連接菱形各邊中點所形成的四邊形是(
)A.平行四邊形 B.菱形 C.矩形 D.正方形7.對于方程:,下列判斷正確的是()A.只有一個實數(shù)根 B.有兩個不同的實數(shù)根C.有兩個相同的實數(shù)根 D.沒有實數(shù)根8.某校七年級有13名同學參加百米競賽,預賽成績各不相同,要取前6名參加決賽,小梅已經(jīng)知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.中位數(shù) B.眾數(shù) C.平均數(shù) D.極差9.下列四個三角形,與左圖中的三角形相似的是().A. B. C. D.10.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①2a+b=0;②m+n=3;③拋物線與x軸的另一個交點是(﹣1,0);④方程ax2+bx+c=3有兩個相等的實數(shù)根;⑤當1≤x≤4時,有y2<y1,其中正確的是()A.①②③ B.①②④ C.①②⑤ D.②④⑤11.已知一次函數(shù),y隨著x的增大而減小,且,則它的大致圖象是()A. B. C. D.12.在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.8二、填空題(每題4分,共24分)13.如圖,一根橡皮筋放置在x軸上,固定兩端A和B,其中A點坐標(0,0),B點坐標(8,0),然后把中點C向上拉升3cm到D,則橡皮筋被拉長了_________cm.14.若一個多邊形的各邊都相等,它的周長是63,且它的內(nèi)角和為900°,則它的邊長是________.15.已知點A(a,0)和點B(0,5)兩點,且直線AB與坐標軸圍成的三角形的面積等于10,則a的值是______.16.已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值=___.17.如圖,正方形的邊長為12,點、分別在、上,若,且,則______.18.一只不透明的袋子中有1個白球、1個紅球和2個黃球,這些球除顏色不同外其它都相同.攪均后從中任意摸出1個球,摸出白球可能性______摸出黃球可能性.(填“等于”或“小于”或“大于”).三、解答題(共78分)19.(8分)如圖1,在平行四邊形中,(),垂足為,所在直線,垂足為.(1)求證:(2)如圖2,作的平分線交邊于點,與交于點,且,求證:20.(8分)再讀教材:寬與長的比是(約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設計,下面我們用寬為2的矩形紙片折疊黃金矩形.(提示;MN=2)第一步,在矩形紙片一端.利用圖①的方法折出一個正方形,然后把紙片展平.第二步,如圖②.把這個正方形折成兩個相等的矩形,再把紙片展平.第三步,折出內(nèi)側(cè)矩形的對角線AB,并把AB折到圖③中所示的AD處,第四步,展平紙片,按照所得的點D折出DE,使DE⊥ND,則圖④中就會出現(xiàn)黃金矩形,問題解決:(1)圖③中AB=________(保留根號);(2)如圖③,判斷四邊形BADQ的形狀,并說明理由;(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.(4)結(jié)合圖④.請在矩形BCDE中添加一條線段,設計一個新的黃金矩形,用字母表示出來,并寫出它的長和寬.21.(8分)閱讀下列材料,并解爺其后的問題:我們知道,三角形的中位線平行于第一邊,且等于第三邊的一半,我們還知道,三角形的三條中位線可以將三角形分成四個全等的一角形,如圖1,若D、E、F分別是三邊的中點,則有,且(1)在圖1中,若的面積為15,則的面積為___________;(2)在圖2中,已知E、F、G、H分別是AB、BC、CD、AD的中點,求證:四邊形EFGH是平行四邊形;(3)如圖3中,已知E、F、G、H分別是AB、BC、CD、AD的中點,,則四邊形EFGH的面積為___________.22.(10分)如圖,在平面直角坐標系中,為坐標原點,直線與軸的正半軸交于點,與直線交于點,若點的橫坐標為3,求直線與直線的解析式.23.(10分)下圖是某大橋的斜拉索部分效果圖,為了測得斜拉索頂端距離海平面的高度,先測出斜拉索底端到橋塔的距離(的長)約為米,又在點測得點的仰角為,測得點的俯角為,求斜拉索頂端點到海平面點的距離(的長).()24.(10分)已知關于x的一元二次方程mx2-2x+1=0.(1)若方程有兩個實數(shù)根,求m的取值范圍;(2)若方程的兩個實數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.25.(12分)如圖,長方形中,點沿著邊按.方向運動,開始以每秒個單位勻速運動、秒后變?yōu)槊棵雮€單位勻速運動,秒后恢復原速勻速運動,在運動過程中,的面積與運動時間的函數(shù)關系如圖所示.(1)直接寫出長方形的長和寬;(2)求,,的值;(3)當點在邊上時,直接寫出與的函數(shù)解析式.26.如圖,邊長為1的正方形組成的網(wǎng)格中,的頂點均在格點上,點、的坐標分是,.(1)的面積為______;(2)點在軸上,當?shù)闹底钚r,在圖中畫出點,并求出的最小值.
參考答案一、選擇題(每題4分,共48分)1、A【解析】
根據(jù)軸對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,符合題意;B、不是軸對稱圖形,不合題意;C、不是軸對稱圖形,不合題意;D、不是軸對稱圖形,不合題意.故選:A.【點睛】本題考查了軸對稱圖形的識別,熟練掌握基本概念是解題的關鍵.2、B【解析】
先求出二次函數(shù)圖象的對稱軸,然后利用二次函數(shù)圖象的對稱性求出圖象與x軸的另一個交點坐標,最后根據(jù)二次函數(shù)與x軸的交點的橫坐標與一元二次方程的根的關系即可得出結(jié)論.【詳解】解:二次函數(shù)圖象的對稱軸為直線x=∵圖象與軸的一個交點為,∴圖象與x軸的另一個交點坐標為(2,0)∴關于的一元二次方程的兩實數(shù)根是,故選B【點睛】此題考查的是求二次函數(shù)圖象與x軸的交點坐標和求一元二次方程的根,掌握二次函數(shù)圖象的對稱性和二次函數(shù)與x軸的交點的橫坐標與一元二次方程的根的關系是解決此題的關鍵.3、D【解析】
直接利用積的乘方運算法則以及結(jié)合同底數(shù)冪的乘法運算法則計算得出答案.【詳解】解:(﹣a)2?a3=a2?a3=a1.故選D.【點睛】此題主要考查了同底數(shù)冪的乘法運算,正確掌握運算法則是解題關鍵.4、D【解析】
由勾股定理可知是直角三角形,由垂線段最短可知當DE⊥AB時,DE有最小值,此時DE與斜邊上的高相等,可求得答案.【詳解】如圖:∵四邊形是平行四邊形,∴CE∥AB,∵點D在線段AB上運動,∴當DE⊥AB時,DE最短,在中,,,,∴AC2+BC2=AB2,∴是直角三角形,過C作CF⊥AB于點F,∴DE=CF=,故選:D.【點睛】本題主要考查平行四邊形的性質(zhì)和直角三角形的性質(zhì),確定出DE最短時D點的位置是解題的關鍵.5、B【解析】
根據(jù)菱形面積的計算方法即可得出答案【詳解】解:∵ABCD為菱形,且對角線長分別為和∴菱形面積為故答案選B【點睛】本題考查菱形面積的特殊算法:對角線乘積的一半,熟練掌握菱形面積算法是解題關鍵6、C【解析】
根據(jù)題意作圖,利用菱形與中位線的性質(zhì)即可求解.【詳解】如圖,E、F、G、H是菱形ABCD各邊的中點,連接EF、FG、GH、EH,判斷四邊形EFGH的形狀,∵E,F(xiàn)是中點,∴EF是△ABC的中位線,∴EH∥BD,同理,EF∥AC,GH∥AC,F(xiàn)G∥BD,∴EH∥FG,EF∥GH,則四邊形EFGH是平行四邊形,又∵AC⊥BD,∴EF⊥EH,即∠FEH=90°∴平行四邊形EFGH是矩形,故答案為:C.【點睛】此題主要考查中點四邊形的判定,解題的關鍵是熟知菱形的性質(zhì)以及矩形的判定.7、B【解析】
原方程變形后求出△=b2-4ac的值,然后根據(jù)計算結(jié)果判斷方程根的情況.【詳解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有兩個不相等的實數(shù)根.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.8、A【解析】
共有13名學生參加競賽,取前6名,所以小梅需要知道自己的成績是否進入前六.我們把所有同學的成績按大小順序排列,第7名學生的成績是這組數(shù)據(jù)的中位數(shù),所以小梅知道這組數(shù)據(jù)的中位數(shù),才能知道自己是否進入決賽.故選A.9、B【解析】
本題主要應用兩三角形相似的判定定理,三邊對應成比例,做題即可.【詳解】解:設單位正方形的邊長為1,給出的三角形三邊長分別為,,.
A、三角形三邊分別是2,,3,與給出的三角形的各邊不成比例,故A選項錯誤;
B、三角形三邊2,4,,與給出的三角形的各邊成比例,故B選項正確;C、三角形三邊2,3,,與給出的三角形的各邊不成比例,故C選項錯誤;D、三角形三邊,,4,與給出的三角形的各邊不成正比例,故D選項錯誤.
故選:B.【點睛】此題考查了相似三角形的判定,注意三邊對應成比例的兩三角形相似.10、B【解析】
①利用對稱軸x=1判定;
②把A(1,3)代入直線y2=mx+n即可判定;
③根據(jù)對稱性判斷;
④方程ax2+bx+c=3的根,就是圖象上當y=3是所對應的x的值.⑤由圖象得出,當1≤x≤4時,有y2≤y1;【詳解】由拋物線對稱軸為直線x=﹣,從而b=﹣2a,則2a+b=0故①正確;直線y2=mx+n過點A,把A(1,3)代入得m+n=3,故②正確;由拋物線對稱性,與x軸的一個交點B(4,0),則另一個交點坐標為(2,0)故③錯誤;方程ax2+bx+c=3從函數(shù)角度可以看做是y=ax2+bx+c與直線y=3求交點,從圖象可以知道,拋物線頂點為(1,3),則拋物線與直線有且只有一個交點故方程ax2+bx+c=3有兩個相等的實數(shù)根,因而④正確;由圖象可知,當1≤x≤4時,有y2≤y1故當x=1或4時y2=y(tǒng)1故⑤錯誤.故選B.【點睛】本題選項較多,比較容易出錯,因此要認真理解題意,明確以下幾點是關鍵:①通常2a+b的值都是利用拋物線的對稱軸來確定;②拋物線與x軸的交點個數(shù)確定其△的值,即b2-4ac的值:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點;③知道對稱軸和拋物線的一個交點,利用對稱性可以求與x軸的另一交點.11、A【解析】
由y隨著x的增大而減小,可知,根據(jù)k,b的取值范圍即可確定一次函數(shù)所經(jīng)過的象限.【詳解】解:y隨著x的增大而減小,又一次函數(shù)的圖像經(jīng)過第一、二、四象限,不經(jīng)過第三象限.故答案為:A【點睛】本題考查了一次函數(shù)的圖像與性質(zhì),確定k的取值范圍是解題的關鍵.12、A【解析】分析:直接根據(jù)勾股定理求解即可.詳解:∵在直角三角形中,勾為3,股為4,∴弦為故選A.點睛:本題考查了勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.二、填空題(每題4分,共24分)13、1【解析】
根據(jù)勾股定理,可求出AD、BD的長,則AD+BD-AB即為橡皮筋拉長的距離.【詳解】Rt△ACD中,AC=AB=4cm,CD=3cm;根據(jù)勾股定理,得:AD==5(cm);∴AD+BD-AB=1AD-AB=10-8=1cm;故橡皮筋被拉長了1cm.
故答案是:1.【點睛】此題主要考查了等腰三角形的性質(zhì)以及勾股定理的應用,解題的關鍵是理解題意,靈活運用所學知識解決問題.14、9【解析】
設多邊形的邊數(shù)為n,先根據(jù)多邊形的內(nèi)角和求出多邊形的邊數(shù),再根據(jù)周長即可求出邊長.【詳解】設多邊形的邊數(shù)為n,由題意得(n-2)·180°=900°解得n=7,則它的邊長是63÷7=9.【點睛】本題考查的是多邊形的內(nèi)角和,解答的關鍵是熟練掌握多邊形的內(nèi)角和公式:(n-2)·180°.15、±1【解析】試題分析:根據(jù)坐標與圖形得到三角形OAB的兩邊分別為|a|與5,然后根據(jù)三角形面積公式有:,解得a=1或a=-1,即a的值為±1.考點:1.三角形的面積;2.坐標與圖形性質(zhì).16、1.【解析】
作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、PB,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴NQ=BC,∵四邊形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=1,即NQ=1,∴MP+NP=QP+NP=QN=1,故答案為1【點睛】本題考查軸對稱-最短路線問題;菱形的性質(zhì).17、【解析】
首先延長FD到G,使DG=BE,利用正方形的性質(zhì)得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性質(zhì)易證△GCF≌△ECF,利用勾股定理可得DF,求出AF,設BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.【詳解】解:如圖,延長FD到G,使DG=BE;連接CG、EF;∵四邊形ABCD為正方形,在△BCE與△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF與△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵DF=,AB=AD=12,∴AF=12?4=8,設BE=x,則AE=12?x,EF=GF=4+x,在Rt△AEF中,由勾股定理得:(12?x)2+82=(4+x)2,解得:x=6,∴BE=6,∴CE=,故答案為.【點睛】本題主要考查了全等三角形的判定及性質(zhì),勾股定理等,構(gòu)建全等三角形,利用方程思想是解答此題的關鍵.18、小于【解析】
先分別求出摸出各種顏色球的概率,再進行比較即可得出答案.【詳解】解:∵袋子中有1個白球、1個紅球和2個黃球,共有4個球,∴摸到白球的概率是,摸到紅球的概率是,摸到黃球的概率是=,∴摸出白球可能性<摸出黃球的可能性;故答案為小于.【點睛】本題主要考查了可能性的大小,用到的知識點為:可能性等于所求情況數(shù)與總情況數(shù)之比.三、解答題(共78分)19、(1)詳見解析;(2)詳見解析【解析】
(1)利用HL證明,可得出;(2)延長到,使得,先證出,再證明,從而得到,所以證出.【詳解】(1)證明:∵平行四邊形∴又∵∴(平行線之間垂直距離處處相等)∴()∴(2)延長到,使得∵,且∴∴∵∴∵∴∵平分∴在中,又∴∴而∴【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定和性質(zhì),添加恰當?shù)妮o助線構(gòu)建全等三角形是解題的關鍵.20、(1);(2)見解析;(3)見解析;(4)見解析.【解析】分析:(1)由勾股定理計算即可;(2)根據(jù)菱形的判定方法即可判斷;(3)根據(jù)黃金矩形的定義即可判斷;(4)如圖④﹣1中,在矩形BCDE上添加線段GH,使得四邊形GCDH為正方形,此時四邊形BGHE為所求是黃金矩形.詳解:(1)如圖3中.在Rt△ABC中,AB===.故答案為.(2)結(jié)論:四邊形BADQ是菱形.理由如下:如圖③中,∵四邊形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四邊形ABQD是平行四邊形,由翻折可知:AB=AD,∴四邊形ABQD是菱形.(3)如圖④中,黃金矩形有矩形BCDE,矩形MNDE.∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.∵BC=2,∴=,∴矩形BCDE是黃金矩形.∵==,∴矩形MNDE是黃金矩形.(4)如圖④﹣1中,在矩形BCDE上添加線段GH,使得四邊形GCDH為正方形,此時四邊形BGHE為所求是黃金矩形.長GH=﹣1,寬HE=3﹣.點睛:本題考查了幾何變換綜合題、黃金矩形的定義、勾股定理、翻折變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考創(chuàng)新題目.21、(1);(2)見解析;(3)1.【解析】
(1)由三角形中位線定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面積=△ABC的面積=即可;
(2)連接BD,證出EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,由三角形中位線定理得出EH∥BD,EH=BD,F(xiàn)G∥BD,F(xiàn)G=BD,得出EH∥FG,EH=FG,即可得出結(jié)論;
(3)證出EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,由三角形中位線定理得出EH∥BD,EH=BD=,F(xiàn)G∥BD,F(xiàn)G=BD,得出EH∥FG,EH=FG,證出四邊形EFGH是平行四邊形,同理:EF∥AC,EF=AC=2,證出EH⊥EF,得出四邊形EFGH是矩形,即可得出結(jié)果.【詳解】(1)解:∵D、E、F分別是△ABC三邊的中點,
則有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,
∴△DEF的面積=△ABC的面積=;
故答案為;
(2)證明:連接BD,如圖2所示:
∵E、F、G、H分別是AB、BC、CD、AD的中點,
∴EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,
∴EH∥BD,EH=BD,F(xiàn)G∥BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形;
(3)解:∵E、F、G、H分別是AB、BC、CD、AD的中點,
∴EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,
∴EH∥BD,EH=BD=,F(xiàn)G∥BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形,
同理:EF∥AC,EF=AC=2,
∵AC⊥BD,
∴EH⊥EF,
∴四邊形EFGH是矩形,
∴四邊形EFGH的面積=EH×EF=×2=1.故答案為(1);(2)見解析;(3)1.【點睛】本題是四邊形綜合題目,考查三角形中位線定理、平行四邊形的判定、矩形的判定與性質(zhì)等知識;熟練掌握三角形中位線定理,證明四邊形EFGH是平行四邊形是解題的關鍵.22、直線l1的解析式為y=﹣x+6,直線l2的解析式為y=x.【解析】
把A(6,0)代入y=﹣x+b求得直線l1的解析式,把B點的橫坐標代入y=﹣x+6得到B點的坐標,再把B點的坐標代入y=kx,即可得到結(jié)論.【詳解】∵直線l1:y=﹣x+b與x軸的正半軸交于點A(6,0),∴0=﹣6+b,∴b=6,∴直線l1的解析式為y=﹣x+6;∵B點的橫坐標為3,∴當x=3時,y=3,∴B(3,3),把B(3,3)代入y=kx得:k=1,∴直線l2的解析式為y=x.【點睛】本題考查了兩條直線相交或平行問題,待定系數(shù)法求函數(shù)的解析式,正確的理解題意是解題的關鍵.23、151米【解析】
先解直角三角形ADC得出AD的長,然后在直角三角形BDC中求得BD的長,兩者相加即可求得AB的長.【詳解】在中,,.在中,米.【點睛】本題考查了解直角三角形的應用-仰角俯角問題、坡度坡角問題,難度適中,通過直角三角形,利用三角函數(shù)求解是解題的關鍵.24、(1)m≤1且m≠0(2)m=-2【解析】
(1)根據(jù)一元二次方程的定義和判別式得到m≠0且Δ=(-2)2-4m≥0,然后求解不等式即可;(2)先根據(jù)根與系數(shù)的關系得到x1+x2=,x1x2=,再將已知條件變形得x1x2-(x1+x2)=,然后整體代入求解即可.【詳解】(1)根據(jù)題意,得m≠0且Δ=(-2)2-4m≥0,解得m≤1且m≠0.(2)根據(jù)題意,得x1+x2=,x1x2=,∵x1x2-x1-x2=,即x1x2-(x1+x2)=,∴-=,解得m=-2.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式和根與系數(shù)的關系(韋達定理),根的判別式:(1)當△=b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;(2)當△=b2﹣4ac=0時,方程有有兩個相等的實數(shù)根;(3)當△=b2﹣4ac<0時,方程沒有實數(shù)根.韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=,x1x2=.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆山東省濱州市惠民縣數(shù)學高一上期末聯(lián)考試題含解析
- 內(nèi)兒科護理培訓課件講解
- 獸藥飼料培訓班課件
- 私人口腔會計管理制度(3篇)
- 診療組長管理制度及流程(3篇)
- 金融國慶活動策劃方案(3篇)
- 防藥品誤食管理制度(3篇)
- 食品車間環(huán)保管理制度(3篇)
- 中學校園文化建設制度
- 養(yǎng)老院收費標準及退費制度
- 廣西出版?zhèn)髅郊瘓F有限公司2026年招聘備考題庫附答案詳解
- 陶瓷工藝品彩繪師改進水平考核試卷含答案
- 2025廣東百萬英才匯南粵惠州市市直事業(yè)單位招聘急需緊缺人才31人(公共基礎知識)測試題附答案
- 粉塵防護知識課件
- 2026年孝昌縣供水有限公司公開招聘正式員工備考題庫及完整答案詳解一套
- (2025年)糧食和物資儲備局招聘考試題庫(答案+解析)
- 2026年樂陵市市屬國有企業(yè)公開招聘工作人員6名備考題庫及答案詳解一套
- 2026年日歷表含農(nóng)歷(2026年12個月日歷-每月一張A4可打?。?/a>
- GB 30981-2020 工業(yè)防護涂料中有害物質(zhì)限量
- 鋼結(jié)構(gòu)廠房布置及設備
- 畢業(yè)設計(論文)-全自動果蔬切丁機設計(含全套CAD圖紙)
評論
0/150
提交評論