2024年浙江杭州西湖區(qū)八年級數(shù)學第二學期期末考試試題含解析_第1頁
2024年浙江杭州西湖區(qū)八年級數(shù)學第二學期期末考試試題含解析_第2頁
2024年浙江杭州西湖區(qū)八年級數(shù)學第二學期期末考試試題含解析_第3頁
2024年浙江杭州西湖區(qū)八年級數(shù)學第二學期期末考試試題含解析_第4頁
2024年浙江杭州西湖區(qū)八年級數(shù)學第二學期期末考試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024年浙江杭州西湖區(qū)八年級數(shù)學第二學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.將五個邊長都為2的正方形按如圖所示擺放,點分別是四個正方形的中心,則圖中四塊陰影面積的和為()A.2 B.4 C.6 D.82.下列二次根式中,為最簡二次根式的是()A. B. C. D.3.已知一組數(shù)據(jù)5,5,6,6,6,7,7,則這組數(shù)據(jù)的方差為()A. B. C. D.64.某小區(qū)居民利用“健步行APP”開展健步走活動,為了解居民的健步走情況,小文同學調查了部分居民某天行走的步數(shù)單位:千步,并將樣本數(shù)據(jù)整理繪制成如下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.有下面四個推斷:小文此次一共調查了200位小區(qū)居民;行走步數(shù)為千步的人數(shù)超過調查總人數(shù)的一半;行走步數(shù)為千步的人數(shù)為50人;行走步數(shù)為千步的扇形圓心角是.根據(jù)統(tǒng)計圖提供的信息,上述推斷合理的是()A. B. C. D.5.如圖,在△ABC中,點D,E分別在邊AB,AC上,DE∥BC,已知AE=6,,則EC的長是()A.4.5 B.8 C.10.5 D.146.用反證法證明:“中,若.則”時,第一步應假設()A. B. C. D.7.下列等式從左到右的變形,屬于因式分解的是()A. B.C. D.8.要得到函數(shù)y2x3的圖象,只需將函數(shù)y2x的圖象()A.向左平移3個單位 B.向右平移3個單位C.向下平移3個單位 D.向上平移3個單位9.若,則下列各式中,錯誤的是()A. B. C. D.10.如圖,正方形的邊長為,動點從點出發(fā),沿的路徑以每秒的速度運動(點不與點、點重合),設點運動時間為秒,四邊形的面積為,則下列圖像能大致反映與的函數(shù)關系是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在射線OA、OB上分別截取OA1、OB1,使OA1OB1;連接A1B1,在B1A1、B1B上分別截取B1A2、B1B2,使B1A2B1B2,連接A2B2;……依此類推,若A1B1O,則A2018B2018O=______________________.12.某高科技開發(fā)公司從2013年起開始投入技術改進資金,經過技術改進后,其產品的生產成本不斷降低,具體數(shù)據(jù)如下表:請你認真分析表中數(shù)據(jù),寫出可以表示該變化規(guī)律的表達式是____________.13.甲、乙兩車從城出發(fā)勻速行駛至城在個行駛過程中甲乙兩車離開城的距離(單位:千米)與甲車行駛的時間(單位:小時)之間的函數(shù)關系如圖所示.則下列結論:①兩城相距千米;②乙車比甲車晚出發(fā)小時,卻早到小時;③乙車出發(fā)后小時追上甲車;④在乙車行駛過程中.當甲、乙兩車相距千米時,或,其中正確的結論是_________.14.如圖,?ABCD中,,,垂足為點若,則的度數(shù)為______.15.已知點A(),B()是一次函數(shù)圖象上的兩點,當時,__.(填“>”、“=”或“<”)16.直線y=x+2與x軸的交點坐標為___________.17.一次函數(shù)y=kx-2的函數(shù)值y隨自變量x的增大而減小,則k的取值范圍是__.18.一組數(shù)據(jù):25,29,20,x,14,它的中位數(shù)是24,則這組數(shù)據(jù)的平均數(shù)為_____.三、解答題(共66分)19.(10分)問題:探究函數(shù)的圖象與性質.小明根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了研究.下面是小明的研究過程,請補充完成.(1)自變量的取值范圍是全體實數(shù),與的幾組對應值列表如下:…-4-3-2-104……210n01m34…其中,m=n=;(2)在如圖所示的平面直角坐標中,描出以上表中各對對應值為坐標的點,并根據(jù)描出的點,畫出該函數(shù)的圖象.(3)觀察圖象,寫出該函數(shù)的兩條性質.20.(6分)某市在道路改造過程中,需要鋪設一條長為1000米的管道,決定由甲、乙兩個工程隊來完成這一工程.已知甲工程隊比乙工程隊每天能多鋪設20米,且甲工程隊鋪設350米所用的天數(shù)與乙工程隊鋪設250米所用的天數(shù)相同.(1)甲、乙工程隊每天各能鋪設多少米?(2)如果要求完成該項工程的工期不超過10天,那么為兩工程隊分配工程量(以百米為單位)的方案有幾種?請你幫助設計出來.21.(6分)某單位計劃在暑假陰間組織員工到某地旅游,參加旅游的人數(shù)估計為10~25人,甲、乙兩家旅行社的服務質量相同,且報價都是每人200元.經過協(xié)商,甲旅行社表示可給予每位游客七折優(yōu)惠;乙旅行社表示可先免去一位游客的費用,其余游客七五折優(yōu)惠.設該單位參加旅游的人數(shù)是x人.選擇甲旅行社時,所需費用為元,選擇乙旅行社時,所需費用為元.(1)寫出甲旅行社收費(元)與參加旅游的人數(shù)x(人)之間的關系式.(2)寫出乙旅行社收費(元)與參加旅游的人數(shù)x(人)之間的關系式.(3)該單位選擇哪一家旅行社支付的旅游費用較少?22.(8分)如圖,在菱形ABCD中,∠BAD=60°,AC與BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC、AD于點F、G,連接OG,則下列結論中一定成立的是()①OG=AB;②與△EGD全等的三角形共有5個;③S四邊形ODGF>S△ABF;④由點A、B、D、E構成的四邊形是菱形.A.1個 B.2個 C.3個 D.4個23.(8分)中國經濟的快速發(fā)展讓眾多國家感受到了威脅,隨著釣魚島事件、南海危機、薩德入韓等一系列事件的發(fā)生,國家安全一再受到威脅,所謂“國家興亡,匹夫有責”,某校積極開展國防知識教育,九年級甲、乙兩班分別選5名同學參加“國防知識”比賽,其預賽成績如圖所示:(1)根據(jù)上圖填寫下表:平均數(shù)中位數(shù)眾數(shù)方差甲班8.58.5乙班8.5101.6(2)根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度分析哪個班的成績較好.24.(8分)如圖1,已知△ABC,AB=AC,以邊AB為直徑的⊙O交BC于點D,交AC于點E,連接DE.(1)求證:DE=DC.(2)如圖2,連接OE,將∠EDC繞點D逆時針旋轉,使∠EDC的兩邊分別交OE的延長線于點F,AC的延長線于點G.試探究線段DF、DG的數(shù)量關系.25.(10分)如圖,直線與軸相交于點,與軸相交于于點.(1)求,兩點的坐標;(2)過點作直線與軸相交于點,且使,求的面積.26.(10分)如圖,矩形ABCD和正方形ECGF,其中E、H分別為AD、BC中點,連結AF、HG、AH.(1)求證:;(2)求證:;

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

連接AP、AN,點A是正方形的對角線的交點,則AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,進而可得四邊形AENF的面積等于△NAP的面積,同理可得答案.【詳解】解:如圖,連接AP,AN,點A是正方形的對角線的交則AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四邊形AENF的面積等于△NAP的面積,而△NAP的面積是正方形的面積的,而正方形的面積為4,∴四邊形AENF的面積為1cm1,四塊陰影面積的和為4cm1.故選B.【點評】本題考查旋轉的性質.旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.要注意旋轉的三要素:①定點﹣旋轉中心;②旋轉方向;③旋轉角度.2、B【解析】

最簡二次根式必須滿足以下兩個條件:1.被開方數(shù)的因數(shù)是(整數(shù)),因式是(整式)(分母中不含根號)2.被開方數(shù)中不含能開提盡方的(因數(shù))或(因式).【詳解】A.=3,不是最簡二次根式;B.,最簡二次根式;C.=,不是最簡二次根式;D.=,不是最簡二次根式.故選:B【點睛】本題考核知識點:最簡二次根式.解題關鍵點:理解最簡二次根式條件.3、A【解析】

先求出這組數(shù)據(jù)的平均數(shù),然后代入方差計算公式求出即可.【詳解】解:∵平均數(shù)=(5+5+6+6+6+7+7)=6,S2=[(5-6)2+(5-6)2+(6-6)2+(6-6)2+(6-6)2+(7-6)2+(7-6)2]=.故選:A.【點睛】本題考查方差的定義,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.4、C【解析】

由千步的人數(shù)及其所占百分比可判斷;由行走步數(shù)為千步的人數(shù)為70,未超過調查總人數(shù)的一半可判斷;總人數(shù)乘以千步的人數(shù)所占比例可判斷;用乘以千步人數(shù)所占比例可判斷.【詳解】小文此次一共調查了位小區(qū)居民,正確;行走步數(shù)為千步的人數(shù)為70,未超過調查總人數(shù)的一半,錯誤;行走步數(shù)為千步的人數(shù)為人,正確;行走步數(shù)為千步的扇形圓心角是,正確,故選C.【點睛】本題考查了頻數(shù)率直方圖,讀懂統(tǒng)計圖表,從中獲得必要的信息是解題的關鍵.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.5、B【解析】

利用相似三角形的判定與性質得出,求出EC即可.【詳解】∵DE∥BC,∴△ADE∽△ABC.∴,即解得:EC=1.故選B.6、B【解析】

熟記反證法的步驟,直接選擇即可【詳解】解:用反證法證明命題“在△ABC中,AB≠AC,求證:∠B≠∠C”的過程中,第一步應是假設∠B=∠C.故選:B【點睛】本題結合角的比較考查反證法,解此題關鍵要懂得反證法的意義及步驟.

反證法的步驟是:

(1)假設結論不成立;

(2)從假設出發(fā)推出矛盾;

(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.7、C【解析】

根據(jù)因式分解的意義,把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解分別進行判斷,即可得出答案.【詳解】解:A、x2+2x-1≠(x-1)2,故本選項錯誤;

B、右邊不是整式積的形式,不是因式分解,故本選項錯誤;

C、符合因式分解的定義,故本選項正確;

D、右邊不是整式積的形式,不是因式分解,故本選項錯誤.

故選:C.【點睛】本題考查多項式的因式分解,解題的關鍵是正確理解因式分解的意義.8、D【解析】

平移后相當于x不變y增加了3個單位,由此可得出答案.【詳解】解:由題意得x值不變y增加3個單位

應向上平移3個單位.

故選:D.【點睛】本題考查一次函數(shù)圖象的幾何變換,注意平移k值不變的性質.9、A【解析】

根據(jù)不等式性質分析即可解答.【詳解】解:A、兩邊都乘以-1,不等號的方向改變,選項變形錯誤,故A符合題意;B、兩邊都減3,不等號的方向不變,故B不符合題意;

C、兩邊都乘以-2,不等號的方向改變,故C不符合題意;

D、兩邊都乘以,不等號的方向不變,故D不符合題意;故選:A.【點睛】主要考查了不等式的基本性質:

(1)不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.

(2)不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變.

(3)不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變.10、D【解析】

根據(jù)點P的路線,找到臨界點為D點,則分段討論P在邊AD、邊DC上運動時的y與x的函數(shù)關系式.【詳解】當0≤x≤4時,點P在AD邊上運動,則y=(x+4)4=2x+8.當4≤x≤8時,點P在DC邊上運動,則y═(8-x+4)4=-2x+24,根據(jù)函數(shù)關系式,可知D正確故選:D.【點睛】本題為動點問題的函數(shù)圖象探究題,考查了一次函數(shù)圖象性質,應用了數(shù)形結合思想.二、填空題(每小題3分,共24分)11、【解析】分析:根據(jù)等腰三角形兩底角相等用α表示出∠A2B2O,依此類推即可得到結論.詳解:∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O==α,∠A4B4O=α,∴∠AnBnO=α,∴A2018B2018O=.故答案為:.點睛:本題考查了等腰三角形兩底角相等的性質,圖形的變化規(guī)律,依次求出相鄰的外角的度數(shù),得到分母為2的指數(shù)次冪變化,分子不變的規(guī)律是解題的關鍵.12、y=【解析】

有表格中數(shù)據(jù)分析可知xy=2.5×7.2=3×6=4×4.5=4.5×4=18,就可得到反比例函數(shù)關系,再設出反比例函數(shù)解析式,利用待定系數(shù)法求出即可.【詳解】由題意可得此函數(shù)解析式為反比例函數(shù)解析式,設其為解析式為y=.當x=2.5時,y=7.2,可得7.2=,解得k=18∴反比例函數(shù)是y=.【點睛】此題主要考查反比例函數(shù)的應用,解題的關鍵是根據(jù)題意找出等量關系.13、①②【解析】

觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得甲、乙兩車離開A城的距離y與時間t的關系式,可求得兩函數(shù)圖象的交點,可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,進而得出答案.【詳解】由圖象可知,A.

B兩城市之間的距離為300km,甲行駛的時間為5小時,而乙是在甲出發(fā)1小時后出發(fā)的,且用時3小時,即比甲早到1小時,∴①②都正確;設甲車離開A城的距離y與t的關系式為y甲=kt,把(5,300)代入可求得,k=60,∴y甲=60t,設乙車離開A城的距離y與t的關系式為y乙=mt+n,把(1,0)和(4,300)代入可得解得∴y乙=100t?100,令y甲=y乙可得:60t=100t?100,解得t=2.5,即甲、乙兩直線的交點橫坐標為t=2.5,此時乙出發(fā)時間為1.5小時,即乙車出發(fā)1.5小時后追上甲車,∴③不正確;令|y甲?y乙|=50,可得|60t?100t+100|=50,即|100?40t|=50,當100?40t=50時,可解得t=,當100?40t=?50時,可解得t=,又當t=時,y甲=50,此時乙還沒出發(fā),當t=時,乙到達B城,y甲=250;綜上可知當t的值為或或或t=時,兩車相距50千米,∴④不正確;綜上,正確的有①②,故答案為:①②【點睛】本題考查了函數(shù)圖像的實際應用,準確從圖中獲取信息并進行分析是解題的關鍵.14、25°【解析】

由等腰三角形性質得∠ACB=∠B=由平行四邊形性質得∠DAE=∠ACB=65?,由垂直定義得∠ADE=90?-∠DAE=90?-65?.【詳解】因為,,所以,∠ACB=∠B=因為,四邊形ABCD是平行四邊形,所以,AD∥BC,所以,∠DAE=∠ACB=65?,又因為,,所以,∠ADE=90?-∠DAE=90?-65?=25?.故答案為25?【點睛】本題考核知識點:平行四邊形,等腰三角形,垂直定義.解題關鍵點:由所求推出必知,逐步解決問題.15、<【解析】試題解析:∵一次函數(shù)y=-1x+5中k=-1<0,∴該一次函數(shù)y隨x的增大而減小,∵x1>x1,∴y1<y1.16、(-2,0)【解析】

令縱坐標為0代入解析式中即可.【詳解】當y=0時,0=x+2,解得:x=-2,∴直線y=x+2與x軸的交點坐標為(-2,0).點睛:本題主要考查了一次函數(shù)與坐標軸的交點問題,關鍵在于理解在x軸上的點的縱坐標為0.17、k<1【解析】

根據(jù)一次函數(shù)圖象的增減性來確定k的符號即可.【詳解】解:∵一次函數(shù)y=kx-2的函數(shù)值y隨自變量x的增大而減小,∴k<1,故答案為k<1.【點睛】本題考查了一次函數(shù)圖象與系數(shù)的關系.在直線y=kx+b(k≠1)中,當k>1時,y隨x的增大而增大;當k<1時,y隨x的增大而減小.18、22.1【解析】∵一組數(shù)據(jù):25,29,20,x,11,它的中位數(shù)是21,所以x=21,∴這組數(shù)據(jù)為11,20,21,25,29,∴平均數(shù)=(11+20+21+25+29)÷5=22.1.故答案是:22.1.【點睛】找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).三、解答題(共66分)19、(1)m=2,n=-1;(2)見解析;(3)見解析.【解析】

(1)將n、m對應的x的值帶入解析式即可;(2)根據(jù)表格中的點坐標再直角坐標系上標出,在連接各點即可;(3)根據(jù)函數(shù)的最值、對稱性、增減性回答即可.【詳解】解:(1)將帶入函數(shù)中得:,將帶入中得:;(2)如圖所示:(3)(答案不唯一,合理即可)1、函數(shù)關于直線對稱;2、函數(shù)在時取得最小值,最小值為-1【點睛】本題是新型函數(shù)題型,是中考必考題型,解題的關鍵是通過函數(shù)的基本性質以及圖象的分析得到相關的值和特殊的函數(shù)性質.20、(1)甲、乙工程隊每天分別能鋪設米和米.(2)所以分配方案有3種.方案一:分配給甲工程隊米,分配給乙工程隊米;方案二:分配給甲工程隊米,分配給乙工程隊米;方案三:分配給甲工程隊米,分配給乙工程隊米.【解析】

(1)設甲工程隊每天能鋪設x米.根據(jù)甲工程隊鋪設350米所用的天數(shù)與乙工程隊鋪設250米所用的天數(shù)相同,列方程求解;

(2)設分配給甲工程隊y米,則分配給乙工程隊(1000-y)米.根據(jù)完成該項工程的工期不超過10天,列不等式組進行分析.【詳解】(1)解:設甲工程隊每天能鋪設米,則乙工程隊每天能鋪設()米.根據(jù)題意得:.解得.檢驗:是原分式方程的解.答:甲、乙工程隊每天分別能鋪設米和米.(2)解:設分配給甲工程隊米,則分配給乙工程隊()米.由題意,得解得.所以分配方案有3種.方案一:分配給甲工程隊米,分配給乙工程隊米;方案二:分配給甲工程隊米,分配給乙工程隊米;方案三:分配給甲工程隊米,分配給乙工程隊米.21、(1);(2);(3)當人數(shù)為15人時,兩家均可選擇,當人數(shù)在之間時選擇乙旅行社,當人數(shù)時,選擇甲旅行社,見解析.【解析】

(1)根據(jù)甲旅行社的優(yōu)惠方式,可計算出y1與x之間的關系.

(2)根據(jù)乙旅行社的優(yōu)惠方式,可計算出y2與x之間的關系.

(3)根據(jù)(1)(2)的表達式,利用不等式的知識可得出人數(shù)多少克選擇旅行社.【詳解】(1);(2)根據(jù)乙旅行社的優(yōu)惠方式;;(3)①甲社總費用=乙社總費用的情況,此時,解得:;即當時,兩家費用一樣.②甲社總費用多于乙社總費用的情況:,解不等式得:,即當時,乙旅行社費用較低.③甲社總費用少于乙社總費用的情況,此時解得:即當時,甲旅行社費用較低.答:當人數(shù)為15人時,兩家均可選擇,當人數(shù)在之間時選擇乙旅行社,當人數(shù)時,選擇甲旅行社.【點睛】此題考查了一次函數(shù)的應用,解答本題的關鍵是得出甲乙旅行社收費與人數(shù)之間的關系式,利用不等式的知識解答,難度一般.22、B【解析】

由AAS證明△ABG≌△DEG,得出AG=DG,證出OG是△ACD的中位線,得出OG=CD=AB,①正確;先證明四邊形ABDE是平行四邊形,證出△ABD、△BCD是等邊三角形,得出AB=BD=AD,因此OD=AG,得出四邊形ABDE是菱形,④正確;由菱形的性質得得出△ABG≌△BDG≌△DEG,由SAS證明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正確;證出OG是△ABD的中位線,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性質和面積關系得出S四邊形ODGF=S△ABF;③不正確;即可得出結果.【詳解】∵四邊形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位線,∴OG=CD=AB,①正確;∵AB∥CE,AB=DE,∴四邊形ABDE是平行四邊形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等邊三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四邊形ABDE是菱形,④正確;∴AD⊥BE,由菱形的性質得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;③不正確;正確的是①④.故選B.【點睛】本題考查了菱形的判定與性質、全等三角形的判定與性質、等邊三角形的判定與性質、三角形中位線定理、相似三角形的判定與性質等知識;本題綜合性強,難度較大.23、8.50.78【解析】分析:(1)根據(jù)“中位數(shù)”、“眾數(shù)”的定義及“方差”的計算公式結合統(tǒng)計圖中的數(shù)據(jù)進行分析計算即可;(2)按照題中要求,分別根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差的意義進行說明即可.詳解:甲的眾數(shù)為:,方差為:,乙的中位數(shù)是:8;故答案為;從平均數(shù)看,兩班平均數(shù)相同,則甲、乙兩班的成績一樣好;從中位數(shù)看,甲班的中位數(shù)大,所以甲班的成績較好;從眾數(shù)看,乙班的眾數(shù)大,所以乙班的成績較好;從方差看,甲班的方差小,所以甲班的成績更穩(wěn)定.點睛:理解“平均數(shù)、中位數(shù)、眾數(shù)、方差的意義

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論