版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
廣東省肇慶市端州區(qū)南國中學英文學校2024年數(shù)學八年級下冊期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖:點E、F為線段BD的兩個三等分點,四邊形AECF是菱形,且菱形AECF的周長為20,BD為24,則四邊形ABCD的面積為()A.24 B.36 C.72 D.1442.下列各式正確的是(
)A.32=±3
B.(-3)2=±3
C.(-3)2=3
D.(-3)23.下列從左到右的變形,是因式分解的是A. B.C. D.4.(2011?濰坊)在今年我市初中學業(yè)水平考試體育學科的女子800米耐力測試中,某考點同時起跑的小瑩和小梅所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說法正確的是()A、小瑩的速度隨時間的增大而增大 B、小梅的平均速度比小瑩的平均速度大C、在起跑后180秒時,兩人相遇 D、在起跑后50秒時,小梅在小瑩的前面5.下列各式:,,+y,,,其中分式共有()A.1個 B.2個 C.3個 D.4個6.使分式有意義的的值是()A. B. C. D.7.下列各命題都成立,其中逆命題也成立的是()A.若a>0,b>0,則a+b>0B.對頂角相等C.全等三角形的對應角相等D.平行四邊形的兩組對邊分別相等8.若,則下列不等式一定成立的是().A. B. C. D.9.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.610.下列各點中,在反比例函數(shù)y=圖象上的是()A.(2,3) B.(﹣1,6) C.(2,﹣3) D.(﹣12,﹣2)二、填空題(每小題3分,共24分)11.在一個矩形中,若一個角的平分線把一條邊分成長為3cm和4cm的兩條線段,則該矩形周長為_________12.關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是_______.13.已知:,則______.14.如圖,四邊形ABCD中,連接AC,AB∥DC,要使AD=BC,需要添加的一個條件是_____.15.如圖所示:分別以直角三角形三邊為邊向外作三個正方形,其面積分別用、、表示,若,,則的長為__________.16.一個多邊形的內(nèi)角和與外角和的比是4:1,則它的邊數(shù)是.17.若,則y_______(填“是”或“不是”)x的函數(shù).18.如圖,在△ABC中,∠CAB=70o,在同一平面內(nèi),將△ABC繞點逆時針旋轉(zhuǎn)50o到△的位置,則∠=_________度.三、解答題(共66分)19.(10分)如圖,在平行四邊形的對角線上存在,兩個點,且,試探究與的關系.20.(6分)(1)計算:;(2)已知,,求的值21.(6分)如圖,一次函數(shù)y=k2x+b的圖象與y軸交于點B,與正比例函數(shù)y=k1(1)分別求出這兩個函數(shù)的解析式;(2)求ΔAOB的面積;(3)點P在x軸上,且ΔPOA是等腰三角形,請直接寫出點P的坐標.22.(8分)如圖,點E,F(xiàn)在菱形ABCD的對邊上,AE⊥BC.∠1=∠1.(1)判斷四邊形AECF的形狀,并證明你的結(jié)論.(1)若AE=4,AF=1,試求菱形ABCD的面積.23.(8分)已知:在矩形ABCD中,點F為AD中點,點E為AB邊上一點,連接CE、EF、CF,EF平分∠AEC.(1)如圖1,求證:CF⊥EF;(2)如圖2,延長CE、DA交于點K,過點F作FG∥AB交CE于點G若,點H為FG上一點,連接CH,若∠CHG=∠BCE,求證:CH=FK;(3)如圖3,過點H作HN⊥CH交AB于點N,若EN=11,FH-GH=1,求GK長.24.(8分)已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別是邊AB,AC,AD的中點,連接CE、CF、OE、OF.(1)求證:△BCE≌△DCF;(2)當AB與BC滿足什么條件時,四邊形AEOF正方形?請說明理由.25.(10分)計算:(48-418)-(313-226.(10分)如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE∥AD.(1)求證:四邊形ACED是平行四邊形;(2)若AC=2,CE=4,求四邊形ACEB的周長.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】
根據(jù)菱形的對角線互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,證明四邊形ABCD是菱形,根據(jù)菱形的四條邊都相等求出邊長AE,根據(jù)菱形的對角線互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根據(jù)四邊形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:如圖,連接AC交BD于點O,∵四邊形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵點E、F為線段BD的兩個三等分點,∴BE=FD,∴BO=OD,∵AO=OC,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形;∵四邊形AECF為菱形,且周長為20,∴AE=5,∵BD=24,點E、F為線段BD的兩個三等分點,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四邊形ABCD=BD?AC=×24×6=72;故選:C.【點睛】本題考查了菱形的判定與性質(zhì),主要利用了菱形的對角線互相垂直平分的性質(zhì),勾股定理以及利用菱形對角線求面積的方法,熟記菱形的性質(zhì)與判定方法是解題的關鍵.2、C【解析】
根據(jù)二次根式的性質(zhì)a2【詳解】解:A.32=3B.(-3)2=3C.(-3)2=32=3,D.(-3)2=32故選C.【點睛】本題考查了二次根式的性質(zhì)與化簡.熟練掌握二次根式的性質(zhì)a23、D【解析】
把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解,結(jié)合選項進行判斷即可.【詳解】根據(jù)因式分解的定義得:從左邊到右邊的變形,是因式分解的是.其他不是因式分解:A,C右邊不是積的形式,B左邊不是多項式.故選D.【點睛】本題考查了因式分解的意義,注意因式分解后左邊和右邊是相等的,不能憑空想象右邊的式子.4、D【解析】A、∵線段OA表示所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象,∴小瑩的速度是沒有變化的,故選項錯誤;B、∵小瑩比小梅先到,∴小梅的平均速度比小瑩的平均速度小,故選項錯誤;C、∵起跑后180秒時,兩人的路程不相等,∴他們沒有相遇,故選項錯誤;D、∵起跑后50秒時OB在OA的上面,∴小梅是在小瑩的前面,故選項正確.故選D.5、B【解析】
判斷分式的依據(jù)是看分母中是否含有字母,如果含有字母則是分式.利用這點進行解題即可.【詳解】在,,,,,中是分式的有:,,故B正確.【點睛】本題考查的是分式的定義,解題的關鍵是找到分母中含有字母的式子,同時一定要注意π不是字母.6、D【解析】
分式有意義的條件是分母不等于0,即x﹣1≠0,解得x的取值范圍.【詳解】若分式有意義,則x﹣1≠0,解得:x≠1.故選D.【點睛】本題考查了分式有意義的條件:當分母不為0時,分式有意義.7、D【解析】
分別找到各選項的逆命題進行判斷即可.【詳解】A.的逆命題為若a+b>0,則a>0,b>0,明顯錯誤,沒有考慮b為負數(shù)且絕對值小于a的情況,B.的逆命題為相等的角都是對頂角,明顯錯誤,C.的逆命題為對應角相等的三角形為全等三角形,這是相似三角形的判定方法,故錯誤,D.的逆命題為兩組對邊分別相等的四邊形是平行四邊形,這是平行四邊形的判定,正確.故選D.【點睛】本題考查了真假命題的判定,屬于簡單題,找到各命題的逆命題是解題關鍵.8、C【解析】
按照不等式的性質(zhì)逐項排除即可完成解答.【詳解】∵x>y∴,A錯誤;3x>3y,B錯誤;,即C正確;,錯誤;故答案為C;【點睛】本題考查了不等式的基本性質(zhì),即給不等式兩邊同加或減去一個整數(shù),不等號方向不變;給不等式兩邊同乘以一個正數(shù),不等號方向不變;給不等式兩邊同乘以一個負數(shù),不等號方向改變;9、C【解析】
先根據(jù)等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關鍵是熟知等腰三角形的三線合一定理.10、A【解析】
根據(jù)反比例函數(shù)圖象上點的坐標特征進行判斷.即當時在反比例函數(shù)y=圖象上.【詳解】解:∵2×3=6,﹣1×6=﹣6,2×(﹣3)=﹣6,﹣12×(﹣2)=24,∴點(2,3)在反比例函數(shù)y=圖象上.故選:A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)為常數(shù),的圖象是雙曲線,圖象上的點的橫縱坐標的積是定值k,即.二、填空題(每小題3分,共24分)11、20或22【解析】
根據(jù)題意矩形的長為7,寬為3或4,因此計算矩形的周長即可.【詳解】根據(jù)題意可得矩形的長為7當形成的直角等腰三角形的直角邊為3時,則矩形的寬為3當形成的直角等腰三角形的直角邊為4時,則矩形的寬為4矩形的寬為3或4周長為或故答案為20或22【點睛】本題主要考查等腰直角三角形的性質(zhì),關鍵在于確定寬的長.12、q<1【解析】
解:∵關于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,∴△=82﹣4q=64﹣4q>0,解得:q<1.故答案為q<1.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關鍵.13、【解析】
首先根據(jù)二次根式有意義的條件和分式有意義的條件列出不等式,求出x的值,然后可得y的值,易求結(jié)果.【詳解】解:由題意得:,∴x=-2,∴y=3,∴,故答案為:.【點睛】本題考查了二次根式和分式的性質(zhì),根據(jù)他們各自的性質(zhì)求出x,y的值是解題關鍵.14、AB=CD(答案不唯一)【解析】
由AB∥DC,AB=DC證出四邊形ABCD是平行四邊形,即可得出AD=BC.【詳解】解:添加條件為:AB=CD(答案不唯一);理由如下:∵AB∥DC,AB=CD,∴四邊形ABCD是平行四邊形,∴AD=BC.故答案為AB=CD(答案不唯一).【點睛】本題考查了平行四邊形的判定與性質(zhì);熟記平行四邊形的判定方法,證明四邊形是平行四邊形是解決問題的關鍵.15、1.【解析】
先設Rt△ABC的三邊分別為a、b、c,再分別用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【詳解】解:設Rt△ABC的三邊分別為a、b、c,∴S1=a2=25,S2=b2,S3=c2=9,∵△ABC是直角三角形,∴c2+b2=a2,即S3+S2=S1,∴S2=S1-S3=25-9=16,∴BC=1,故答案為:1.【點睛】本題考查的是勾股定理的應用及正方形的面積公式,熟知勾股定理是解答此題的關鍵.16、1.【解析】
多邊形的外角和是360度,內(nèi)角和與外角和的比是4:1,則內(nèi)角和是1440度.n邊形的內(nèi)角和是(n﹣2)?180°,如果已知多邊形的內(nèi)角和,就可以得到一個關于邊數(shù)的方程,解方程就可以求出多邊形的邊數(shù).【詳解】解:根據(jù)題意,得(n﹣2)?180=4360,解得:n=1.則此多邊形的邊數(shù)是1.故答案為1.17、不是【解析】
根據(jù)函數(shù)的定義可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應的關系,據(jù)此即可判斷.【詳解】對于x的值,y的對應值不唯一,故不是函數(shù),故答案為:不是.【點睛】本題是對函數(shù)定義的考查,熟練掌握函數(shù)的定義是解決本題的關鍵.18、10【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)找到對應點、對應角進行解答.【詳解】∵△ABC繞點A逆時針旋轉(zhuǎn)50°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC-∠BAB′=1°.故答案是:1.【點睛】本題考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對應線段、對應角分別相等,圖形的大小、形狀都不改變.要注意旋轉(zhuǎn)的三要素:①定點--旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度.三、解答題(共66分)19、見解析.【解析】
由,得到BQ=DP,再根據(jù)平行四邊形性質(zhì)可得AD=BC,AD∥BC,可證△ADP≌△CBQ(SAS),即可得:AP=CQ,∠APD=∠CQB.可得∠APB=∠DQC,結(jié)論可證.【詳解】解:AP=CQ,AP∥CQ;理由:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC
∴∠ADP=∠CBQ,
∵BP=DQ,∴DP=BQ
∴△ADP≌△CBQ(SAS),
∴AP=CQ,∠APD=∠CQB.
∵∠APB=180°-∠APD,∠DQC=180°-∠CQB
∴∠APB=∠DQC
∴AP∥CQ.∴AP=CQ,AP∥CQ【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定和性質(zhì),能利用平行四邊形找到證明全等的條件是解答此題的關鍵.20、(1);(2)11.【解析】
(1)根據(jù)實數(shù)的性質(zhì)進行化簡即可求解;(2)根據(jù)完全平方公式與平方差公式即可求解.【詳解】解:(1)原式;(2)【點睛】此題主要考查整式的運算,解題的關鍵是熟知實數(shù)的性質(zhì)及乘法公式的應用.21、(1)y=34x;y=2x-5;(2)10;(3)(-5,0)或(5,0)或【解析】
(1)根據(jù)點A坐標,可以求出正比例函數(shù)解析式,再求出點B坐標即可求出一次函數(shù)解析式.(2)如圖1中,過A作AD⊥y軸于D,求出AD即可解決問題.(3)分三種情形討論即可①OA=OP,②AO=AP,③PA=PO.【詳解】解:(1)∵正比例函數(shù)y=k1x∴4k∴k∴正比例函數(shù)解析式為y=如圖1中,過A作AC⊥x軸于C,在RtΔAOC中,OC=4,AC=3AO=∴OB=OA=5∴B(0,-5)∴4k∴一次函數(shù)解析式為y=2x-5(2)如圖1中,過A作AD⊥y軸于D,∵A(4,3)∴AD=4∴(3))如圖2中,當OP=OA時,P1(?5,0),P2(5,0),當AO=AP時,P3(8,0),當PA=PO時,線段OA的垂直平分線為y=?43x+∴P4(∴滿足條件的點P的坐標(-5,0)或(5,0)或(8,0)或(【點睛】此題考查一次函數(shù)綜合題,解題關鍵在于作輔助線.22、四邊形AECF是矩形,理由見解析;(1)菱形ABCD的面積=10.【解析】
(1)由菱形的性質(zhì)可得AD=BC,AD∥BC,∠BAD=∠BCD,由∠1=∠1可得∠EAF=∠FCB=90°=∠AEC,可得四邊形AECF是矩形;
(1)由勾股定理可求AB的值,由菱形的面積公式可求解.【詳解】解:(1)四邊形AECF是矩形
理由如下:
∵四邊形ABCD是菱形
∴AD=BC=AB,AD∥BC,∠BAD=∠BCD,
∵AE⊥BC
∴AE⊥AD
∴∠FAE=∠AEC=90°
∵∠1=∠1
∴∠BAD-∠1=∠BCD-∠1
∴∠EAF=∠FCB=90°=∠AEC
∴四邊形AECF是矩形
(1)∵四邊形AECF是矩形
∴AF=EC=1
在Rt△ABE中,AB1=AE1+BE1,
∴AB1=16+(AB-1)1,
∴AB=5
∴菱形ABCD的面積=5×4=10【點睛】本題考查了菱形的性質(zhì),矩形的判定和性質(zhì),勾股定理,熟練運用菱形的性質(zhì)是本題的關鍵.23、(1)證明見解析;(2)證明見解析;(3)CN=25.【解析】
(1)如圖,延長EF交CD延長線于點Q,先證明CQ=CE,再證明△FQD≌△FEA,根據(jù)全等三角形的對應邊相等可得EF=FQ,再根據(jù)等腰三角形的性質(zhì)即可得CF⊥EF;(2)分別過點F、H作FM⊥CE,HP⊥CD,垂足分別為M、P,證明四邊形DFHP是矩形,繼而證明△HPC≌△FMK,根據(jù)全等三角形的性質(zhì)即可得CH=FK;(3)連接CN,延長HG交CN于點T,設∠DCF=α,則∠GCF=α,先證明得到FG=CG=GE,∠CGT=2,再由FG是BC的中垂線,可得BG=CG,∠CGT=∠FGK=∠BGT=2,再證明HN∥BG,得到四邊形HGBN是平行四邊形,繼而證明△HNC≌△KGF,推導可得出HT=CT=TN,由FH-HG=1,所以設GH=m,則BN=m,F(xiàn)H=m+1,CE=2FG=4m+2,繼而根據(jù),可得關于m的方程,解方程求得m的值即可求得答案.【詳解】(1)如圖,延長EF交CD延長線于點Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF平分∠AEC,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵點F是AD中點,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,∴CF⊥EF;(2)分別過點F、H作FM⊥CE,HP⊥CD,垂足分別為M、P,∵CQ=CE,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四邊形DFHP是矩形,∴DF=HP,∴FM=DF=HP,∵∠CHG=∠BCE,AD∥BC,F(xiàn)G∥CD,∴∠K=∠BCE=∠CHG=∠DCH,又∵∠FMK=∠HPC=90°,∴△HPC≌△FMK,∴CH=FK;(3)連接CN,延長HG交CN于點T,設∠DCF=α,則∠GCF=α,∵FG∥CD,∴∠DCF=∠CFG,∴∠FCG=∠CFG,∴FG=CG,∵CF⊥EF,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG,∴GF=FE,∴FG=CG=GE,∠CGT=2,∵FG是BC的中垂線,∴BG=CG,∠CGT=∠FGK=∠BGT=2,∵∠CHG=∠BCE=90°-2,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2,∴HN∥BG,∴四邊形HGBN是平行四邊形,∴HG=BN,HN=BG=CG=FG,∴△HNC≌△KGF,∴GK=CN,∠HNC=∠FGK=∠NHT=2,∴HT=CT=TN,∵FH-HG=1,∴設GH=m,則BN=m,F(xiàn)H=m+1,CE=2FG=4m+2,∵GT=,∴CN=2HT=11+2m,∵,∴∴(舍去),,∴CN=GK=2HT=25.【點睛】本題考查的是四邊形綜合題,涉及了等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),矩形的性質(zhì)與判定,三角形外角的性質(zhì)等,綜合性較強,難度較大,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.24、(1)證明見解析;(2)AB⊥BC時,四邊形AEOF正方形.【解析】
(1)根據(jù)中點的定義及菱形的性質(zhì)可得BE=DF,∠B=∠D,BC=CD,利用SAS即可證明△BCE≌△DCF;(2)由中點的定義可得OE為△ABC的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫(yī)在心衰中的應用
- 最先與最后魯迅課件
- 2025年昭通市農(nóng)業(yè)科學院招聘城鎮(zhèn)公益性崗位工作人員(2人)考試筆試備考試題及答案解析
- 牛奶營養(yǎng)與健康
- 中小學消防安全教育課
- 中醫(yī)音樂養(yǎng)生理論與應用
- 中國著名文化景點介紹
- 2025云南昆明市第十二中學教育集團招聘考試筆試模擬試題及答案解析
- 2025福建福州新投新筑開發(fā)建設有限公司市場化選聘職業(yè)經(jīng)理人1人筆試考試參考題庫及答案解析
- 2025年撫順市市場監(jiān)督管理局所屬事業(yè)單位招聘高層次和急需緊缺人才14人(第二批)筆試考試備考試題及答案解析
- 2025中原農(nóng)業(yè)保險股份有限公司招聘67人筆試備考重點試題及答案解析
- 2025中原農(nóng)業(yè)保險股份有限公司招聘67人備考考試試題及答案解析
- 2025年度河北省機關事業(yè)單位技術(shù)工人晉升高級工考試練習題附正確答案
- 交通運輸布局及其對區(qū)域發(fā)展的影響課時教案
- 2025年中醫(yī)院護理核心制度理論知識考核試題及答案
- GB/T 17981-2025空氣調(diào)節(jié)系統(tǒng)經(jīng)濟運行
- 比亞迪儲能項目介紹
- 2025年9月廣東深圳市福田區(qū)事業(yè)單位選聘博士11人備考題庫附答案
- 糖尿病足潰瘍VSD治療創(chuàng)面氧自由基清除方案
- 《公司治理》期末考試復習題庫(含答案)
- 自由職業(yè)者項目合作合同協(xié)議2025年
評論
0/150
提交評論