版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
TheTimeValueofMoney
ChapterOutlineTimevalueassociatedwithmoneyDeterminingfuturevalueatgiveninterestratePresentvaluebasedoncurrentvalueoffundstobereceivedDeterminingYieldonanInvestment.CompoundingordiscountingoccurringonalessthanannualbasisRelationshipto
TheCapitalOutlayDecisionThetimevalueofmoneyisusedtodeterminewhetherfuturebenefitsaresufficientlylargetojustifycurrentoutlaysMathematicaltoolsofthetimevalueofmoneyareusedinmakingcapitalallocationdecisionsFutureValue–SingleAmountMeasuringvalueofanamountthatisallowedtogrowatagiveninterestoveraperiodoftimeAssumingthattheworthof$1,000needstobecalculatedafter4yearsata10%interestperyear,wehave: 1styear……$1,000X1.10=$1,100 2ndyear…...$1,100X1.10=$1,210 3rdyear……$1,210X1.10=$1,331 4thyear……$1,331X1.10=$1,464FutureValue–SingleAmount(Cont’d)AgeneralizedformulaforFutureValue:
WhereFV=FuturevaluePV=Presentvaluei=Interestraten=Numberofperiods;Inthepreviouscase,PV=$1,000,i=10%,n=4,hence;FutureValueof$1(FVIF)Table9–1FutureValue–SingleAmount(Cont’d)Indeterminingfuturevalue,thefollowingcanbeused: Where=theinterestfactorIf$10,000wereinvestedfor10yearsat8%,thefuturevaluewouldbe:PresentValue–SingleAmountAsumpayableinthefutureisworthlesstodaythanthestatedamountTheformulaforthepresentvalueisderivedfromtheoriginalformulaforfuturevalue:Thepresentvaluecanbedeterminedbysolvingforamathematicalsolutiontotheformulaabove,thusrestatingtheformulaas:AssumingPresentValueof$1(PVIF)Table9–2RelationshipofPresent
andFutureValueFutureValue–AnnuityAnnuity:AseriesofconsecutivepaymentsorreceiptsofequalamountFutureValueofanAnnuity:CalculatedbycompoundingeachindividualpaymentintothefutureandthenaddingupallofthesepaymentsFutureValue–Annuity(cont’d)AgeneralizedformulaforFutureValueofAnnuity: FVA=A×FVIFA
Where:FVA=FuturevalueoftheAnnuityFVIFA=AnnuityFactor={[(1+i)n–1]÷i}A=Annuityvaluei=Interestraten=Numberofperiods;Assuming,A=$1,000,n=4,andi=10%CompoundingProcessforAnnuityFutureValue
ofanAnnuityof$1(FVIFA)Table9–3PresentValue–AnnuityCalculatedbydiscountingeachindividualpaymentbacktothepresentandthenaddingupallofthesepaymentsAgeneralizedformulaforPresentValueofAnnuity: PVA=A×PVIFA
Where:PVA=PresentvalueoftheAnnuityPVIFA=AnnuityFactor={1–[1÷(1+i)n]÷i}A=Annuityvaluei=Interestraten=NumberofperiodsPresentValue
ofanAnnuityof$1(PVIFA)AssumingthatA=$1,000,n=4,i=10%,wehave:Table9–4TimeValueRelationshipsComparisonsinclude:TherelationshipbetweenpresentvalueandfuturevalueInverserelationshipexistsbetweenthepresentvalueandfuturevalueofasingleamountTherelationshipbetweenthePresentValueofasingleamountandthePresentValueofanAnnuityThePresentValueofanAnnuityisthesumofthepresentvaluesofsingleamountspayableattheendofeachperiodTherelationshipbetweentheFutureValueandFutureValueofAnnuityTheFutureValueofanAnnuityisthesumofthefuturevaluesofsingleamountsreceivableattheendofeachperiodDeterminingtheAnnuityValueAre-lookatthevariablesinvolvedintimevalueofmoney:FV/PV:Future/PresentvalueofmoneyN:no.ofyearsI:InterestorYIELDA:AnnuityValue/paymentperperiodinanannuityGiventhefirstthreevariables,anddeterminingthefourthvariable“A”(unknown).AnnuityEqualingaFutureValueAssumingthatata10%interestrate,after4years,anamountof$4,641needstoaccumulated:Forn=4,andi=10%,is4.641.Thus,Aequals$1,000asbelow:AnnuityEqualingaPresentValueDeterminingwhatsizeofanannuitycanbeequatedtoagivenamount:Assumingn=4,i=6%:RelationshipofPresent
ValuetoAnnuityAnnualinterestisbasedonthebeginningbalanceforeachyearasshowninthefollowingtablethatshowsflowoffunds:Table9–5LoanAmortization Amortgageloantoberepaidover20years at8%interest:LoanAmortizationTableInsuchacasethepartofthepaymentstothemortgagecompanywillgotowardthepaymentofinterest,withtheremainderappliedtodebtreduction,asindicatedinthefollowingtable:Table9–6SixFormulasDeterminingtheYieldonInvestmentDeterminingtheunknownvariable“i“,giventhefollowingvariables:FV/PV:Future/PresentvalueofmoneyN:no.ofyearsA:AnnuityValue/paymentperperiodinanannuityYield–PresentValue
ofaSingleAmountTocalculatetheyieldonaninvestmentproducing$1,464after4yearshavingapresentvalueof$1,000:Weseethatforn=4and=0.683,theinterestrateoryieldis10%Yield–PresentValue
ofaSingleAmount(Cont’d)InterpolationmayalsobeusedtofindamorepreciseanswerDifferencebetweenthevalueatthelowestinterestrateandthedesignatedvalueTheexactvaluecanbedeterminedas:Yield–PresentValueofanAnnuityTocalculatetheyieldonaninvestmentof$10,000,producing$1,490perannumfor10years:Hence:Yield–PresentValueofanAnnuity(Cont’d)FlipbacktothetablecontainingthePresentValue-AnnuityfactorsonSlide9-16Readacrossthecolumnsforn=10periods,onecanseethattheyieldis8percentInterpolationappliedtoasingleamountcanalsobeappliedhereforamorepreciseanswerSpecialConsiderations
inTimeValueAnalysisCompoundingfrequencyCertaincontractualagreementsmayrequiresemiannual,quarterly,ormonthlycompoundingperiodsInsuchcases, N=No.ofyears
×No.ofcompoundingperiods duringtheyear I=Quotedannualinterest
/No.of compoundingperiodsduringtheyearSpecialConsiderations
inTimeValueAnalysisPatternsofPaymentProblemsmayevolvearoundanumberofdifferentpaymentorreceiptpatternsNoteverysituationinvolvesasingleamountoranannuityAcontractmaycallforthepaymentofadifferentamounteachyearoverthestatedperiodorperiodofannuityCompoundingfrequency:CasesCase1:Determinethefuturevalueofa$1,000investmentafter5yearsat8%annualinterestcompoundedsemiannuallyWhere,n=5×2=10;i=8%/2=4%(usingTable9–1FVIF=1.480)Case2:Determinethepresentvalueof20quarterlypaymentsof$2,000eachtobereceivedoverthenext5years,wherei=8%perannumWhere,n=20;i=2%PatternsofPayment:CasesAssumeacontractinvolvingpaymentsofdifferentamountseachyearforathree-yearperiodTodeterminethepresentvalue,eachpaymentisdiscountedtothepresentandthentotaled (Assuming8%discountrate)DeferredAnnuitySituationsinvolvingacombinationofsingleamountsandanannuity.WhenannuityispaidsometimeinthefutureDeferredAnnuity:CaseAssumingacontractinvolvingpaymentsofdifferentamountseachyearforathreeyearperiod:Anannuityof$1,000ispaidattheendofeachyearfromthefourththroughtheeighthyearTodeterminethepresentvalueofthecashflowsat8%discountrateTodeterminetheannuityDeferredAnnuity:Case(Cont’d)Todiscountthe$3,993backtothepresent,whichfallsatthebeginningofthefourthperiod,ineffec
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46696-2025永久性阻焊材料規(guī)范
- 賈敏才課件教學(xué)課件
- 2026春招:新興際華筆試題及答案
- 2026年建筑設(shè)備能效管理與自動化系統(tǒng)
- 2026春招:維修技術(shù)員試題及答案
- 貨運安全生產(chǎn)培訓(xùn)知識課件
- 貨物類投標培訓(xùn)課件
- 2026年邯鄲幼兒師范高等??茖W(xué)校高職單招職業(yè)適應(yīng)性測試備考題庫有答案解析
- 醫(yī)療大數(shù)據(jù)在公共衛(wèi)生事件應(yīng)對中的應(yīng)用
- 醫(yī)院醫(yī)療質(zhì)量管理與醫(yī)療質(zhì)量提升路徑
- 學(xué)校德育處工作崗位職責
- DLT 5717-2015 農(nóng)村住宅電氣工程技術(shù)規(guī)范
- 員工保守商業(yè)秘密和與知識產(chǎn)權(quán)有關(guān)的保密協(xié)議(范本)
- 氧氣理化特性表
- 物資、百貨、五金采購 投標技術(shù)方案技術(shù)標
- 路面工程試驗檢測-路面基層底基層試驗檢測
- 文旅項目立項報告
- 京張高鐵現(xiàn)場觀摩會整體策劃方案
- 安捷倫1200標準操作規(guī)程
- 合伙人合同協(xié)議書電子版
- 離婚協(xié)議書下載電子版完整離婚協(xié)議書下載三篇
評論
0/150
提交評論