版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省常州市達標名校高三第二次聯考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.2.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形3.若復數滿足,則()A. B. C. D.4.已知是的共軛復數,則()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數的最大值為()A.7 B.15 C.31 D.636.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.7.設,,則()A. B.C. D.8.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內切圓半徑為()A. B. C. D.9.如圖是計算值的一個程序框圖,其中判斷框內應填入的條件是()A.B.C.D.10.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸11.已知實數,滿足約束條件,則目標函數的最小值為A. B.C. D.12.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數在上的最小值和最大值分別是_____________.14.已知點是拋物線的準線上一點,F為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.15.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為______________百米.16.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的最小正周期是,且當時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).18.(12分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.19.(12分)如圖,設橢圓:,長軸的右端點與拋物線:的焦點重合,且橢圓的離心率是.(Ⅰ)求橢圓的標準方程;(Ⅱ)過作直線交拋物線于,兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.20.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.21.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.22.(10分)的內角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.2、D【解析】
A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.3、C【解析】
把已知等式變形,利用復數代數形式的除法運算化簡,再由復數模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法,是基礎題.4、A【解析】
先利用復數的除法運算法則求出的值,再利用共軛復數的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數代數形式的乘除運算,考查了共軛復數的概念,是基礎題.5、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.6、D【解析】
做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.【點睛】本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.7、D【解析】
由不等式的性質及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質及換底公式,屬基礎題.8、B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質,考查三角形的內心的概念,考查了轉化的思想,屬于中檔題.9、B【解析】
根據計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據結果填寫判斷框,屬于基礎題.10、A【解析】
根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.11、B【解析】
作出不等式組對應的平面區(qū)域,目標函數的幾何意義為動點到定點的斜率,利用數形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數形結合是解決本題的關鍵.12、B【解析】
因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導,研究函數單調性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導數在函數最值的求解中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題14、【解析】
由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據拋物線切線方程的求解方法求得點坐標.15、【解析】
建系,將直線用方程表示出來,再用參數表示出線段的長度,最后利用導數來求函數最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標系,則.設直線,即,則,所以,所以,,則,則,當時,,則單調遞減,當時,,則單調遞增,所以當時,最短,此時.故答案為:【點睛】本題考查導數的實際應用,屬于中檔題.16、2【解析】
運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)根據函數的最小正周期可求出的值,由該函數的最大值可得出的值,再由,結合的取值范圍可求得的值,由此可得出函數的解析式;(2)由計算出的取值范圍,據此列表、描點、連線可得出函數在區(qū)間上的圖象.【詳解】(1)因為函數的最小正周期是,所以.又因為當時,函數取得最大值,所以,同時,得,因為,所以,所以;(2)因為,所以,列表如下:描點、連線得圖象:【點睛】本題考查正弦函數解析式的求解,同時也考查了利用五點作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.18、(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.19、(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由已知求出拋物線的焦點坐標即得橢圓中的,再由離心率可求得,從而得值,得標準方程;(Ⅱ)設直線方程為,設,把直線方程代入拋物線方程,化為的一元二次方程,由韋達定理得,由弦長公式得,同理求得點的橫坐標,于是可得,將面積表示為參數的函數,利用導數可求得最大值.【詳解】(Ⅰ)∵橢圓:,長軸的右端點與拋物線:的焦點重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標準方程為.(Ⅱ)過點的直線的方程設為,設,,聯立得,∴,,∴.過且與直線垂直的直線設為,聯立得,∴,故,∴,面積.令,則,,令,則,即時,面積最小,即當時,面積的最小值為9,此時直線的方程為.【點睛】本題考查橢圓方程的求解,拋物線中弦長的求解,涉及三角形面積范圍問題,利用導數求函數的最值問題,屬綜合困難題.20、(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標系,為平面的法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點,,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標系,,,,,,,設為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點睛】本題考查了線線垂直,二面角,意在考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務審核審批崗位分工制度
- 試論我國股東提案權制度
- 數學核心素養(yǎng)培訓
- 行政處罰類案指導制度
- 2025年國開法律文書筆試及答案
- 2025年電視臺專業(yè)筆試真題及答案
- 2025年稅務公務員筆試題目及答案
- 2025年范縣中醫(yī)院護士招聘筆試及答案
- 2025年事業(yè)單位公務員考試答案
- 2025年濰坊濰城區(qū)公開招聘筆試及答案
- 變壓器借用合同范本
- 東海藥業(yè)校招測評題庫
- 精準定位式漏水檢測方案
- 2023氣管插管意外拔管的不良事件分析及改進措施
- 2023自動啟閉噴水滅火系統(tǒng)技術規(guī)程
- 架線弧垂計算表(應力弧垂插值計算)
- 工廠驗收測試(FAT)
- 市醫(yī)療保險高值藥品使用申請表
- 認知障礙患者進食問題評估與護理
- 高職單招數學試題及答案
- 基礎化學(本科)PPT完整全套教學課件
評論
0/150
提交評論