版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省樂陵市中考數(shù)學(xué)猜題卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.點M(a,2a)在反比例函數(shù)y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±22.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>03.已知二次函數(shù)y=x2﹣4x+m的圖象與x軸交于A、B兩點,且點A的坐標(biāo)為(1,0),則線段AB的長為()A.1 B.2 C.3 D.44.如圖,扇形AOB中,OA=2,C為弧AB上的一點,連接AC,BC,如果四邊形AOBC為菱形,則圖中陰影部分的面積為()A. B. C. D.5.下列圖形中,不是軸對稱圖形的是()A. B. C. D.6.在中,,,,則的值是()A. B. C. D.7.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC,若∠CAB=22.5°,CD=8cm,則⊙O的半徑為()A.8cm B.4cm C.4cm D.5cm8.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)9.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學(xué)記數(shù)法表示為()A. B. C. D.10.如果一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,那么k、b應(yīng)滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0二、填空題(本大題共6個小題,每小題3分,共18分)11.在函數(shù)y=xx12.關(guān)于的方程有增根,則______.13.已知關(guān)于x的方程x2+(1-m)x+m14.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.15.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.16.如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為__________.三、解答題(共8題,共72分)17.(8分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)18.(8分)如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.19.(8分)2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負擔(dān)、身心發(fā)展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學(xué)七年級全體學(xué)生中隨機抽取了若干名學(xué)生進行問卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時間,并繪制成如下不完整的統(tǒng)計圖.根據(jù)上述信息,解答下列問題:(1)本次抽取的學(xué)生人數(shù)是______;扇形統(tǒng)計圖中的圓心角α等于______;補全統(tǒng)計直方圖;(2)被抽取的學(xué)生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.20.(8分)我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數(shù),四軍才分布一疋,請問官軍多少數(shù).”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?21.(8分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數(shù)解.22.(10分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.23.(12分)一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學(xué)家把1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1,4,9,16,25,…,稱為“正方形數(shù)”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數(shù)136101521a…正方形數(shù)1491625b49…五邊形數(shù)151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個“正方形數(shù)”是________;若第n個“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個“五邊形數(shù)”是___________.24.如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,然后解方程即可求解.【詳解】因為點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,,解得:,故選D.【點睛】本題主要考查反比例函數(shù)圖象的上點的特征,解決本題的關(guān)鍵是要熟練掌握反比例函數(shù)圖象上點的特征.2、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項錯誤;C.當(dāng)x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當(dāng)x=1,y>0,∴當(dāng)x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.3、B【解析】
先將點A(1,0)代入y=x2﹣4x+m,求出m的值,將點A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點,設(shè)A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個不等的實數(shù)根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點睛】此題考查拋物線與坐標(biāo)軸的交點,解題關(guān)鍵在于將已知點代入.4、D【解析】連接OC,過點A作AD⊥CD于點D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,可得∠AOC=∠BOC=60°,故△ACO與△BOC為邊長相等的兩個等邊三角形,再根據(jù)銳角三角函數(shù)的定義得出AD=OA?sin60°=2×=,因此可求得S陰影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故選D.點睛:本題考查的是扇形面積的計算,熟記扇形的面積公式及菱形的性質(zhì)是解答此題的關(guān)鍵.5、A【解析】
觀察四個選項圖形,根據(jù)軸對稱圖形的概念即可得出結(jié)論.【詳解】根據(jù)軸對稱圖形的概念,可知:選項A中的圖形不是軸對稱圖形.故選A.【點睛】此題主要考查了軸對稱圖形,軸對稱圖形的關(guān)鍵是尋找對稱軸,對稱軸可使圖形兩部分折疊后重合.6、D【解析】
首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.7、C【解析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出OC的長,即為圓的半徑.【詳解】解:連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴故選:C.【點睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.8、C【解析】
試題分析:A、B無法進行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點:因式分解【詳解】請在此輸入詳解!9、D【解析】
科學(xué)記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6
590
000=6.59×1.故選:D.【點睛】本題考查學(xué)生對科學(xué)記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.10、B【解析】試題分析:∵一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數(shù)的性質(zhì)和圖象二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠-3【解析】求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)分式分母不為0的條件,要使xx+3在實數(shù)范圍內(nèi)有意義,必須12、-1【解析】根據(jù)分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點睛:此題主要考查了分式方程的增根問題,解題關(guān)鍵是明確增根出現(xiàn)的原因,把增根代入最簡公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數(shù).13、1.【解析】試題分析:∵關(guān)于x的方程x2∴Δ=(1-m)∴m的最大整數(shù)值為1.考點:1.一元二次方程根的判別式;2.解一元一次不等式.14、-1.【解析】
設(shè)正方形的對角線OA長為1m,根據(jù)正方形的性質(zhì)則可得出B、C坐標(biāo),代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【詳解】設(shè)正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標(biāo)代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數(shù)綜合題.15、【解析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.16、【解析】分析:延長AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點睛:本題考查了正方形的性質(zhì),關(guān)鍵是根據(jù)全等三角形的判定和性質(zhì)得出EG=FG=1,再利用勾股定理計算.三、解答題(共8題,共72分)17、小時【解析】
過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據(jù)時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時間大約為:50÷40=(小時).考點:解直角三角形的應(yīng)用-方向角問題18、(1)證明見解析;(2)4.【解析】
(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進而可得EB的長,然后可得答案.【詳解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【點睛】考點:全等三角形的判定與性質(zhì).19、(1)30;;(2).【解析】試題分析:(1)根據(jù)題意列式求值,根據(jù)相應(yīng)數(shù)據(jù)畫圖即可;(2)根據(jù)題意列表,然后根據(jù)表中數(shù)據(jù)求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的學(xué)生人數(shù)是30人;扇形統(tǒng)計圖中的圓心角α等于144°;故答案為30,144°;補全統(tǒng)計圖如圖所示:(2)根據(jù)題意列表如下:設(shè)豎列為小紅抽取的跑道,橫排為小花抽取的跑道,記小紅和小花抽在相鄰兩道這個事件為A,∴.考點:列表法與樹狀圖法;扇形統(tǒng)計圖;利用頻率估計概率.20、官有200人,兵有800人【解析】
設(shè)官有x人,兵有y人,根據(jù)1000官兵正好分1000匹布,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論.【詳解】解:設(shè)官有x人,兵有y人,依題意,得:,解得:.答:官有200人,兵有800人.【點睛】本題主要考查二元一次方程組的應(yīng)用,根據(jù)題意列出二元一次方程組是解題的關(guān)鍵.21、,1.【解析】
首先化簡(﹣a)÷(1+),然后根據(jù)a是不等式﹣<a<的整數(shù)解,求出a的值,再把求出的a的值代入化簡后的算式,求出算式的值是多少即可.【詳解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整數(shù)解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,當(dāng)a=1時,原式==1.22、【解析】
根據(jù)已知得該三角形為直角三角形,利用三角函數(shù)公式求出各邊的值,再利用三角形的面積公式求解.【詳解】如圖:由已知可得:∠A=30°,∠B=60°,∴△ABC為直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=10=5,AC=AB·cos30°=10=,∴S△ABC=.【點睛】本題考查了解直角三角形:在直角三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年終末期認知下降癥狀群管理方案
- 老年終末期疼痛評估的全程管理策略
- 創(chuàng)新公共服務(wù)提供方式滿足多樣需求
- 敏視通過ISOSAE 21434道路車輛-網(wǎng)絡(luò)安全工程認證
- 老年癡呆癥早期篩查中的醫(yī)患溝通倫理
- 申論國家公務(wù)員考試(行政執(zhí)法)試題與參考答案(2024年)
- 老年消化性潰瘍患者跌倒預(yù)防與安全用藥教育方案
- 老年慢性病管理游戲化模擬教學(xué)
- 2026年及未來5年市場數(shù)據(jù)中國割草機器人行業(yè)市場深度分析及投資規(guī)劃建議報告
- 2026年及未來5年市場數(shù)據(jù)中國蛋白胨行業(yè)市場調(diào)查研究及發(fā)展趨勢預(yù)測報告
- 重慶市2026年高一(上)期末聯(lián)合檢測(康德卷)化學(xué)+答案
- 2026年湖南郴州市百??毓杉瘓F有限公司招聘9人備考考試題庫及答案解析
- 綠電直連政策及新能源就近消納項目電價機制分析
- 鐵路除草作業(yè)方案范本
- 2026屆江蘇省常州市生物高一第一學(xué)期期末檢測試題含解析
- 2026年及未來5年市場數(shù)據(jù)中國高溫工業(yè)熱泵行業(yè)市場運行態(tài)勢與投資戰(zhàn)略咨詢報告
- 教培機構(gòu)排課制度規(guī)范
- 2026年檢視問題清單與整改措施(2篇)
- 認識時間(課件)二年級下冊數(shù)學(xué)人教版
- 【四年級】【數(shù)學(xué)】【秋季上】期末家長會:數(shù)海引航愛伴成長【課件】
- 紹興東龍針紡織印染有限公司技改年產(chǎn)10500萬米印染面料生產(chǎn)線項目環(huán)境影響報告
評論
0/150
提交評論