版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆遼寧省錦州市凌海市中考數(shù)學(xué)考前最后一卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結(jié)果兩人同時到達(dá)C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.2.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.63.長江經(jīng)濟(jì)帶覆蓋上海、江蘇、浙江、安徽、江西、湖北、湖南、重慶、四川、云南、貴州等11省市,面積約2050000平方公里,約占全國面積的21%.將2050000用科學(xué)記數(shù)法表示應(yīng)為()A.205萬 B. C. D.4.如圖,⊙O的半徑OC與弦AB交于點D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分5.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱6.下列安全標(biāo)志圖中,是中心對稱圖形的是()A. B. C. D.7.如圖,在平面直角坐標(biāo)系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標(biāo)為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)8.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.9.已知一次函數(shù)y=kx+b的大致圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.沒有實數(shù)根C.有兩個相等的實數(shù)根 D.有一個根是010.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm二、填空題(共7小題,每小題3分,滿分21分)11.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.12.如圖,拋物線交軸于,兩點,交軸于點,點關(guān)于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.13.不等式的解集是________________14.已知點A(4,y1),B(,y2),C(-2,y3)都在二次函數(shù)y=(x-2)2-1的圖象上,則y1,y2,y3的大小關(guān)系是.15.分解因式:2x2﹣8=_____________16.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.17.計算:(﹣2a3)2=_____.三、解答題(共7小題,滿分69分)18.(10分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴(kuò)大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.設(shè)每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數(shù)式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.19.(5分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.20.(8分)如圖,一盞路燈沿?zé)粽诌吘壣涑龅墓饩€與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).21.(10分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側(cè)作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當(dāng)點D在線段BC上時,證明BC=CE+CD.應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當(dāng)點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.(2)如圖③,當(dāng)點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.22.(10分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數(shù)的表達(dá)式;直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?23.(12分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應(yīng)點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.24.(14分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】設(shè)乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據(jù)題意可得等量關(guān)系:甲騎110千米所用時間=乙騎100千米所用時間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.2、B【解析】
根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計算即可.【詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【點睛】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質(zhì)與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應(yīng)用.3、C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】2050000將小數(shù)點向左移6位得到2.05,所以2050000用科學(xué)記數(shù)法表示為:20.5×106,故選C.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.5、A【解析】
側(cè)面為三個長方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.
故選A.【點睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關(guān)鍵..6、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.7、A【解析】
延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標(biāo).【詳解】如圖,點P的坐標(biāo)為(-4,-3).
故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.8、C【解析】
根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應(yīng)邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.9、A【解析】
判斷根的情況,只要看根的判別式△=b2?4ac的值的符號就可以了.【詳解】∵一次函數(shù)y=kx+b的圖像經(jīng)過第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個不等的實數(shù)根,故選A.【點睛】根的判別式10、C【解析】
圓錐的側(cè)面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設(shè)母線長為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題解析:∵四邊形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.12、【解析】
根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4)、作點E關(guān)于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關(guān)于對稱軸的對稱點E的坐標(biāo)為(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4),作點E關(guān)于x軸的對稱點E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點睛】本題主要考查拋物線的性質(zhì)以及兩點間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.13、【解析】
首先去分母進(jìn)而解出不等式即可.【詳解】去分母得,1-2x>15移項得,-2x>15-1合并同類項得,-2x>14系數(shù)化為1,得x<-7.故答案為x<-7.【點睛】此題考查了解一元一次不等式,解不等式要依據(jù)不等式的基本性質(zhì):(1)不等式的兩邊同時加上或減去同一個數(shù)或整式不等號的方向不變;(2)不等式的兩邊同時乘以或除以同一個正數(shù)不等號的方向不變;(3)不等式的兩邊同時乘以或除以同一個負(fù)數(shù)不等號的方向改變.14、y3>y1>y2.【解析】試題分析:將A,B,C三點坐標(biāo)分別代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考點:二次函數(shù)的函數(shù)值比較大小.15、2(x+2)(x﹣2)【解析】
先提公因式,再運用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【點睛】考核知識點:因式分解.掌握基本方法是關(guān)鍵.16、51.【解析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.17、4a1.【解析】
根據(jù)積的乘方運算法則進(jìn)行運算即可.【詳解】原式故答案為【點睛】考查積的乘方,掌握運算法則是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】
(1)、根據(jù)銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進(jìn)價-降價,列式即可;(2)、根據(jù)總利潤=單件利潤×數(shù)量,列出方程即可;(3)、根據(jù)(2)中的相關(guān)關(guān)系方程,判斷方程是否有實數(shù)根即可.【詳解】(1)、設(shè)每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,
故答案為(20+2x),(40-x);(2)、根據(jù)題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應(yīng)用問題,屬于中等難度題型.解決這個問題的關(guān)鍵就是要根據(jù)題意列出方程.19、(1)證明見解析(2)1【解析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應(yīng)角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結(jié)合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經(jīng)過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點睛】本題考查了切線的性質(zhì)定理以及判定定理,以及直角三角形三角函數(shù)的應(yīng)用,證明圓的切線的問題常用的思路是根據(jù)切線的判定定理轉(zhuǎn)化成證明垂直的問題.20、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關(guān)于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設(shè)AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【點睛】解此題關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,把實際問題抽象到解直角三角形中,利用三角函數(shù)解答即可.21、探究:證明見解析;應(yīng)用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;
應(yīng)用:先算出BC,進(jìn)而算出BD,再用勾股定理求出DE,即可得出結(jié)論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
應(yīng)用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根據(jù)勾股定理得,DE=,
∴△DCE的周長為CD+CE+DE=2+
故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE
∴BC=CD-BD=CD-CE,
故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案為BC=CE-CD.22、(1)m=8,反比例函數(shù)的表達(dá)式為y=;(2)當(dāng)n=3時,△BMN的面積最大.【解析】
(1)求出點A的坐標(biāo),利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標(biāo)為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.23、(1)證明見解析;(2)AE=.【解析】
(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中?。ê希┫⊥灵_發(fā)有限公司招聘17人筆試參考題庫附帶答案詳解(3卷)
- 阿壩州2024四川阿壩州人力資源和社會保障局考核招聘事業(yè)單位緊缺專業(yè)技術(shù)人員10人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 洮南市2024吉林白城市洮南市事業(yè)單位引進(jìn)急需緊缺人才6人(3號)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 武義縣2024年浙江金華武義縣融媒體中心招聘事業(yè)編制采編工作人員2人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 宜賓市2024上半年四川宜賓市屏山縣事業(yè)單位考核招聘28人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 國家事業(yè)單位招聘2024國家糧食和物資儲備局河北局事業(yè)單位招聘統(tǒng)一筆試筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 南充市2024四川省南充市引進(jìn)高層次人才筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 北京市2024中國交響樂團(tuán)應(yīng)屆畢業(yè)生招聘10人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 義烏市2024浙江金華市義烏市市場發(fā)展委員會下屬事業(yè)單位選調(diào)事業(yè)編制人員1人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 2025年中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所學(xué)術(shù)期刊中心工作人員招聘備考題庫完整參考答案詳解
- 特種設(shè)備安全管理技能培訓(xùn)
- 2024年蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 餐廳治安事件應(yīng)急預(yù)案
- 智能垃圾分類設(shè)備
- 醫(yī)療美容診所、門診部規(guī)章制度及崗位職責(zé)
- DL-T5394-2021電力工程地下金屬構(gòu)筑物防腐技術(shù)導(dǎo)則
- HYT 082-2005 珊瑚礁生態(tài)監(jiān)測技術(shù)規(guī)程(正式版)
- 區(qū)塊鏈技術(shù)在旅游行業(yè)的應(yīng)用
- 機(jī)械制造技術(shù)課程設(shè)計-低速軸機(jī)械加工工藝規(guī)程設(shè)計
- 機(jī)場運行職業(yè)規(guī)劃書
- 銀行物業(yè)服務(wù)投標(biāo)方案(技術(shù)方案)
評論
0/150
提交評論