版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省泰州市名校2024年中考數(shù)學對點突破模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個2.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=63.下列計算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x4.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)
25
26
27
28
天數(shù)
1
1
2
3
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,275.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據(jù)測定,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學記數(shù)法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣76.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.167.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過原點,那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位8.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.9.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.10.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結論有()個.A.3 B.4 C.2 D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.二次函數(shù)y=ax2+bx+c(a≠0)的部分對應值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…則二次函數(shù)y=ax2+bx+c在x=2時,y=______.12.如圖,利用圖形面積的不同表示方法,能夠得到的代數(shù)恒等式是____________________(寫出一個即可).13.函數(shù)中自變量x的取值范圍是___________.14.如圖,每一幅圖中有若干個大小不同的菱形,第1幅圖中有1個,第2幅圖中有3個,第3幅圖中有5個,則第4幅圖中有_____個,第n幅圖中共有_____個.15.計算:(a2)2=_____.16.如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標為__.三、解答題(共8題,共72分)17.(8分)4×100米拉力賽是學校運動會最精彩的項目之一.圖中的實線和虛線分別是初三?一班和初三?二班代表隊在比賽時運動員所跑的路程y(米)與所用時間x(秒)的函數(shù)圖象(假設每名運動員跑步速度不變,交接棒時間忽略不計).問題:(1)初三?二班跑得最快的是第接力棒的運動員;(2)發(fā)令后經(jīng)過多長時間兩班運動員第一次并列?18.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.(1)試說明DF是⊙O的切線;(2)若AC=3AE,求tanC.19.(8分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網(wǎng)格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.20.(8分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.21.(8分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.22.(10分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關系式;求甲、乙兩班學生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?23.(12分)某市旅游景區(qū)有A,B,C,D,E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:(1)2018年春節(jié)期間,該市A,B,C,D,E這五個景點共接待游客萬人,扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.(2)甲,乙兩個旅行團在A,B,D三個景點中隨機選擇一個,這兩個旅行團選中同一景點的概率是.24.如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.2、D【解析】
運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.3、C【解析】
根據(jù)合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義逐項求解,利用排除法即可得到答案.【詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【點睛】本題考查了合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義,解答本題的關鍵是熟練掌握各知識點.4、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.5、C【解析】試題分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.所以0.0000105=1.05×10﹣5,故選C.考點:科學記數(shù)法.6、B【解析】根據(jù)平移的基本性質,得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故選C.“點睛”本題考查平移的基本性質:①平移不改變圖形的形狀和大?。虎诮?jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關鍵.7、A【解析】將拋物線平移,使平移后所得拋物線經(jīng)過原點,若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經(jīng)過原點;若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經(jīng)過原點,故選A.8、A【解析】
根據(jù)軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;
B、不是軸對稱圖形,故本選項錯誤;
C、不是軸對稱圖形,故本選項錯誤;
D、不是軸對稱圖形,故本選項錯誤.
故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.10、A【解析】
利用拋物線的對稱性可確定A點坐標為(-3,0),則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;由拋物線開口向下得到a>0,再利用對稱軸方程得到b=2a>0,則可對③進行判斷;利用x=-1時,y<0,即a-b+c<0和a>0可對④進行判斷.【詳解】∵拋物線的對稱軸為直線x=-1,點B的坐標為(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正確;∵拋物線與x軸有2個交點,∴△=b2-4ac>0,所以②正確;∵拋物線開口向下,∴a>0,∵拋物線的對稱軸為直線x=-=-1,∴b=2a>0,∴ab>0,所以③錯誤;∵x=-1時,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正確.故選A.【點睛】本題考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2-4ac決定拋物線與x軸的交點個數(shù):△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.也考查了二次函數(shù)的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣1【解析】試題分析:觀察表中的對應值得到x=﹣3和x=5時,函數(shù)值都是7,則根據(jù)拋物線的對稱性得到對稱軸為直線x=1,所以x=0和x=2時的函數(shù)值相等,解:∵x=﹣3時,y=7;x=5時,y=7,∴二次函數(shù)圖象的對稱軸為直線x=1,∴x=0和x=2時的函數(shù)值相等,∴x=2時,y=﹣1.故答案為﹣1.12、(a+b)2=a2+2ab+b2【解析】
完全平方公式的幾何背景,即乘法公式的幾何驗證.此類題型可從整體和部分兩個方面分析問題.本題從整體來看,整個圖形為一個正方形,找到邊長,表示出面積,從部分來看,該圖形的面積可用兩個小正方形的面積加上2個矩形的面積表示,從不同角度思考,但是同一圖形,所以它們面積相等,列出等式.【詳解】解:,【點睛】此題考查了完全平方公式的幾何意義,從不同角度思考,用不同的方法表示相應的面積是解題的關鍵.13、x≤2【解析】試題解析:根據(jù)題意得:解得:.14、72n﹣1【解析】
根據(jù)題意分析可得:第1幅圖中有1個,第2幅圖中有2×2-1=3個,第3幅圖中有2×3-1=5個,…,可以發(fā)現(xiàn),每個圖形都比前一個圖形多2個,繼而即可得出答案.【詳解】解:根據(jù)題意分析可得:第1幅圖中有1個.
第2幅圖中有2×2-1=3個.
第3幅圖中有2×3-1=5個.
第4幅圖中有2×4-1=7個.
….
可以發(fā)現(xiàn),每個圖形都比前一個圖形多2個.
故第n幅圖中共有(2n-1)個.
故答案為7;2n-1.點睛:考查規(guī)律型中的圖形變化問題,難度適中,要求學生通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律.15、a1.【解析】
根據(jù)冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關鍵.16、(-2,7).【解析】
解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點C的坐標為:(﹣4,8).設直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點E的坐標為:(﹣2,7).故答案為(﹣2,7).三、解答題(共8題,共72分)17、(1)1;(2)發(fā)令后第37秒兩班運動員在275米處第一次并列.【解析】
(1)直接根據(jù)圖象上點橫坐標可知道最快的是第1接力棒的運動員用了12秒跑完100米;(2)分別利用待定系數(shù)法把圖象相交的部分,一班,二班的直線解析式求出來后,聯(lián)立成方程組求交點坐標即可.【詳解】(1)從函數(shù)圖象上可看出初三?二班跑得最快的是第1接力棒的運動員用了12秒跑完100米;(2)設在圖象相交的部分,設一班的直線為y1=kx+b,把點(28,200),(40,300)代入得:解得:k=,b=﹣,即y1=x﹣,二班的為y2=k′x+b′,把點(25,200),(41,300),代入得:解得:k′=,b′=,即y2=x+聯(lián)立方程組,解得:,所以發(fā)令后第37秒兩班運動員在275米處第一次并列.【點睛】本題考查了利用一次函數(shù)的模型解決實際問題的能力和讀圖能力.要先根據(jù)題意列出函數(shù)關系式,再代數(shù)求值.解題的關鍵是要分析題意根據(jù)實際意義準確的列出解析式,再把對應值代入求解,并會根據(jù)圖示得出所需要的信息.要掌握利用函數(shù)解析式聯(lián)立成方程組求交點坐標的方法.18、(1)詳見解析;(2)【解析】
(1)連接OD,根據(jù)等邊對等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【詳解】(1)連接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切線;(2)連接BE,∵AB是直徑,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.19、(1)(2)見解析;(3)P(0,2).【解析】分析:(1)根據(jù)A,C兩點的坐標即可建立平面直角坐標系.(2)分別作各點關于x軸的對稱點,依次連接即可.(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,即為所求.詳解:(1)(2)如圖所示:(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.設直線B1C′的解析式為y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直線AB2的解析式為:y=2x+2,∴當x=0時,y=2,∴P(0,2).點睛:本題主要考查軸對稱圖形的繪制和軸對稱的應用.20、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】
(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行合理變形,解決相似三角形問題時要注意分類討論.21、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據(jù)切線的性質和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質、直角三角形的性質以及圓周角定理.此題難度適中,注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法.22、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】
(1)由圖象直接寫出函數(shù)關系式;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年農(nóng)業(yè)文化遺產(chǎn)活化利用指南
- 煙草制品經(jīng)營風險防控管理手冊
- 2026青龍湖(河北)產(chǎn)業(yè)發(fā)展集團有限公司招聘15人備考題庫及一套參考答案詳解
- 2026年原型設計工具高階應用培訓
- 計算機行業(yè)年度策略:AI應用加快全球格局重塑中
- 職業(yè)健康風險評估與員工職業(yè)發(fā)展動態(tài)調整機制
- 職業(yè)健康促進與職業(yè)健康效益優(yōu)化
- 職業(yè)健康與心理健康的整合干預策略-2
- 陽江2025年廣東陽江陽西縣新墟鎮(zhèn)招聘合同制禁毒工作人員筆試歷年參考題庫附帶答案詳解
- 邢臺2025年河北邢臺市襄都區(qū)招聘中小學幼兒園教師75人筆試歷年參考題庫附帶答案詳解
- 云南省玉溪市2025-2026學年八年級上學期1月期末物理試題(原卷版+解析版)
- 2026年哈爾濱通河縣第一批公益性崗位招聘62人考試參考試題及答案解析
- 就業(yè)協(xié)議書解約函模板
- 研發(fā)部門員工加班管理細則
- 鋼結構橋梁施工監(jiān)測方案
- 2025人教pep版三年級英語上冊字帖
- 《5G移動通信》課件-項目六 5G網(wǎng)絡中的人工智能技術
- 2025江蘇蘇州高新區(qū)獅山商務創(chuàng)新區(qū)下屬國有企業(yè)招聘9人筆試題庫及答案詳解
- 教培機構年終工作總結
- 2025年秋季青島版三年級數(shù)學上冊求比一個數(shù)的幾倍多(少)幾的數(shù)教學課件
- 人才技術入股公司股權分配協(xié)議書
評論
0/150
提交評論