版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆山東省沂水縣重點(diǎn)名校中考沖刺卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.-5的倒數(shù)是A. B.5 C.- D.-52.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且?2≤x≤1時(shí),y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.13.如圖,這是由5個(gè)大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.4.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△EDC.當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在AC上時(shí),∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°5.下面四個(gè)幾何體:其中,俯視圖是四邊形的幾何體個(gè)數(shù)是()A.1 B.2 C.3 D.46.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°7.已知直線(xiàn)y=ax+b(a≠0)經(jīng)過(guò)第一,二,四象限,那么直線(xiàn)y=bx-a一定不經(jīng)過(guò)(
)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限8.如圖,點(diǎn)E是矩形ABCD的邊AD的中點(diǎn),且BE⊥AC于點(diǎn)F,則下列結(jié)論中錯(cuò)誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個(gè) D.tan∠CAD=9.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論正確的是()A.a(chǎn)<0 B.b2-4ac<0 C.當(dāng)-1<x<3時(shí),y>0 D.-=110.如圖,AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,若⊙O的半徑為5,AB=8,則CD的長(zhǎng)是()A.2B.3C.4D.511.如圖,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)是1,點(diǎn)M,N,O均為格點(diǎn),點(diǎn)N在⊙O上,若過(guò)點(diǎn)M作⊙O的一條切線(xiàn)MK,切點(diǎn)為K,則MK=()A.3 B.2 C.5 D.12.如圖,⊙O的直徑AB的長(zhǎng)為10,弦AC長(zhǎng)為6,∠ACB的平分線(xiàn)交⊙O于D,則CD長(zhǎng)為()A.7 B. C. D.9二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,將△AOB繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)后得到,若,則的度數(shù)是_______.14.如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線(xiàn)交BC于點(diǎn)E,交DC的延長(zhǎng)線(xiàn)于點(diǎn)F,BG⊥AE,垂足為G,BG=4,則△CEF的周長(zhǎng)為_(kāi)___.15.若一個(gè)正多邊形的內(nèi)角和是其外角和的3倍,則這個(gè)多邊形的邊數(shù)是______.16.在一次數(shù)學(xué)測(cè)試中,同年級(jí)人數(shù)相同的甲、乙兩個(gè)班的成績(jī)統(tǒng)計(jì)如下表:班級(jí)平均分中位數(shù)方差甲班乙班數(shù)學(xué)老師讓同學(xué)們針對(duì)統(tǒng)計(jì)的結(jié)果進(jìn)行一下評(píng)估,學(xué)生的評(píng)估結(jié)果如下:這次數(shù)學(xué)測(cè)試成績(jī)中,甲、乙兩個(gè)班的平均水平相同;甲班學(xué)生中數(shù)學(xué)成績(jī)95分及以上的人數(shù)少;乙班學(xué)生的數(shù)學(xué)成績(jī)比較整齊,分化較?。鲜鲈u(píng)估中,正確的是______填序號(hào)17.一元二次方程x2+mx+3=0的一個(gè)根為-1,則另一個(gè)根為.18.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點(diǎn),把矩形ABCD沿BE折疊,若點(diǎn)A恰好落在CD上點(diǎn)F處,則AE的長(zhǎng)為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)某工廠(chǎng)計(jì)劃在規(guī)定時(shí)間內(nèi)生產(chǎn)24000個(gè)零件,若每天比原計(jì)劃多生產(chǎn)30個(gè)零件,則在規(guī)定時(shí)間內(nèi)可以多生產(chǎn)300個(gè)零件.求原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù)和規(guī)定的天數(shù).為了提前完成生產(chǎn)任務(wù),工廠(chǎng)在安排原有工人按原計(jì)劃正常生產(chǎn)的同時(shí),引進(jìn)5組機(jī)器人生產(chǎn)流水線(xiàn)共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線(xiàn)每天生產(chǎn)零件的個(gè)數(shù)比20個(gè)工人原計(jì)劃每天生產(chǎn)的零件總數(shù)還多20%,按此測(cè)算,恰好提前兩天完成24000個(gè)零件的生產(chǎn)任務(wù),求原計(jì)劃安排的工人人數(shù).20.(6分)計(jì)算:|﹣1|+(﹣1)2018﹣tan60°21.(6分)為實(shí)施“農(nóng)村留守兒童關(guān)愛(ài)計(jì)劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;某愛(ài)心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求出所選兩名留守兒童來(lái)自同一個(gè)班級(jí)的概率.22.(8分)已知關(guān)于的二次函數(shù)(1)當(dāng)時(shí),求該函數(shù)圖像的頂點(diǎn)坐標(biāo).(2)在(1)條件下,為該函數(shù)圖像上的一點(diǎn),若關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)也落在該函數(shù)圖像上,求的值(3)當(dāng)函數(shù)的圖像經(jīng)過(guò)點(diǎn)(1,0)時(shí),若是該函數(shù)圖像上的兩點(diǎn),試比較與的大小.23.(8分)如圖,在平行四邊形ABCD中,E、F是對(duì)角線(xiàn)BD上的兩點(diǎn),且BF=DE.求證:AE∥CF.24.(10分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點(diǎn)B到直線(xiàn)OM的距離.25.(10分)計(jì)算:(-)-2–2()+26.(12分)某公司為了擴(kuò)大經(jīng)營(yíng),決定購(gòu)進(jìn)6臺(tái)機(jī)器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機(jī)器供選擇,其中每種機(jī)器的價(jià)格和每臺(tái)機(jī)器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過(guò)預(yù)算,本次購(gòu)買(mǎi)機(jī)器所耗資金不能超過(guò)34萬(wàn)元.甲乙價(jià)格(萬(wàn)元/臺(tái))75每臺(tái)日產(chǎn)量(個(gè))10060(1)按該公司要求可以有幾種購(gòu)買(mǎi)方案?如果該公司購(gòu)進(jìn)的6臺(tái)機(jī)器的日生產(chǎn)能力不能低于380個(gè),那么為了節(jié)約資金應(yīng)選擇什么樣的購(gòu)買(mǎi)方案?27.(12分)趙亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測(cè)得其長(zhǎng)度為9.6米和2米,則學(xué)校旗桿的高度為_(kāi)_______米.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
若兩個(gè)數(shù)的乘積是1,我們就稱(chēng)這兩個(gè)數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.2、D【解析】
先求出二次函數(shù)的對(duì)稱(chēng)軸,再根據(jù)二次函數(shù)的增減性得出拋物線(xiàn)開(kāi)口向上a>0,然后由-2≤x≤1時(shí),y的最大值為9,可得x=1時(shí),y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對(duì)稱(chēng)軸是直線(xiàn)x=-2a2a∵當(dāng)x≥2時(shí),y隨x的增大而增大,∴a>0,∵-2≤x≤1時(shí),y的最大值為9,∴x=1時(shí),y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a),對(duì)稱(chēng)軸直線(xiàn)x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當(dāng)a>0時(shí),拋物線(xiàn)y=ax2+bx+c(a≠0)的開(kāi)口向上,x<-b2a時(shí),y隨x的增大而減??;x>-b2a時(shí),y隨x的增大而增大;x=-b2a時(shí),y取得最小值4ac-b24a3、A【解析】
觀(guān)察所給的幾何體,根據(jù)三視圖的定義即可解答.【詳解】左視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.【點(diǎn)睛】本題考查了三視圖的知識(shí),左視圖是從物體的左面看得到的視圖.4、C【解析】
由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.5、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點(diǎn):簡(jiǎn)單幾何體的三視圖6、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點(diǎn):1.面動(dòng)旋轉(zhuǎn)問(wèn)題;2.平行線(xiàn)的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).7、D【解析】
根據(jù)直線(xiàn)y=ax+b(a≠0)經(jīng)過(guò)第一,二,四象限,可以判斷a、b的正負(fù),從而可以判斷直線(xiàn)y=bx-a經(jīng)過(guò)哪幾個(gè)象限,不經(jīng)過(guò)哪個(gè)象限,本題得以解決.【詳解】∵直線(xiàn)y=ax+b(a≠0)經(jīng)過(guò)第一,二,四象限,∴a<0,b>0,∴直線(xiàn)y=bx-a經(jīng)過(guò)第一、二、三象限,不經(jīng)過(guò)第四象限,故選D.【點(diǎn)睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.8、D【解析】
由又AD∥BC,所以故A正確,不符合題意;過(guò)D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線(xiàn)段的垂直平分線(xiàn)的性質(zhì)可得結(jié)論,故B正確,不符合題意;
根據(jù)相似三角形的判定即可求解,故C正確,不符合題意;
由△BAE∽△ADC,得到CD與AD的大小關(guān)系,根據(jù)正切函數(shù)可求tan∠CAD的值,故D錯(cuò)誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過(guò)D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點(diǎn)F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個(gè),故C正確,不符合題意;D.設(shè)AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯(cuò)誤,符合題意.故選:D.【點(diǎn)睛】考查相似三角形的判定,矩形的性質(zhì),解直角三角形,掌握相似三角形的判定方法是解題的關(guān)鍵.9、D【解析】試題分析:根據(jù)二次函數(shù)的圖象和性質(zhì)進(jìn)行判斷即可.解:∵拋物線(xiàn)開(kāi)口向上,∴∴A選項(xiàng)錯(cuò)誤,∵拋物線(xiàn)與x軸有兩個(gè)交點(diǎn),∴∴B選項(xiàng)錯(cuò)誤,由圖象可知,當(dāng)-1<x<3時(shí),y<0∴C選項(xiàng)錯(cuò)誤,由拋物線(xiàn)的軸對(duì)稱(chēng)性及與x軸的兩個(gè)交點(diǎn)分別為(-1,0)和(3,0)可知對(duì)稱(chēng)軸為即-=1,∴D選項(xiàng)正確,故選D.10、A【解析】試題分析:已知AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,由垂徑定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故選A.考點(diǎn):垂徑定理;勾股定理.11、B【解析】
以O(shè)M為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進(jìn)而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點(diǎn)睛】考查了切線(xiàn)的性質(zhì):圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線(xiàn),必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.12、B【解析】
作DF⊥CA,交CA的延長(zhǎng)線(xiàn)于點(diǎn)F,作DG⊥CB于點(diǎn)G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線(xiàn)的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長(zhǎng)線(xiàn)上,作DG⊥CB于點(diǎn)G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、60°【解析】
根據(jù)題意可得,根據(jù)已知條件計(jì)算即可.【詳解】根據(jù)題意可得:,故答案為60°【點(diǎn)睛】本題主要考查旋轉(zhuǎn)角的有關(guān)計(jì)算,關(guān)鍵在于識(shí)別那個(gè)是旋轉(zhuǎn)角.14、8【解析】試題解析:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線(xiàn)交BC于點(diǎn)E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9-6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=4可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周長(zhǎng)等于16,又∵?ABCD,∴△CEF∽△BEA,相似比為1:2,∴△CEF的周長(zhǎng)為815、8【解析】
解:設(shè)邊數(shù)為n,由題意得,180(n-2)=3603解得n=8.所以這個(gè)多邊形的邊數(shù)是8.16、【解析】
根據(jù)平均數(shù)、中位數(shù)和方差的意義分別對(duì)每一項(xiàng)進(jìn)行解答,即可得出答案.【詳解】解:∵甲班的平均成績(jī)是92.5分,乙班的平均成績(jī)是92.5分,∴這次數(shù)學(xué)測(cè)試成績(jī)中,甲、乙兩個(gè)班的平均水平相同;故正確;∵甲班的中位數(shù)是95.5分,乙班的中位數(shù)是90.5分,甲班學(xué)生中數(shù)學(xué)成績(jī)95分及以上的人數(shù)多,故錯(cuò)誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學(xué)生的數(shù)學(xué)成績(jī)比較整齊,分化較??;故正確;上述評(píng)估中,正確的是;故答案為:.【點(diǎn)睛】本題考查平均數(shù)、中位數(shù)和方差,平均數(shù)表示一組數(shù)據(jù)的平均程度中位數(shù)是將一組數(shù)據(jù)從小到大或從大到小重新排列后,最中間的那個(gè)數(shù)或最中間兩個(gè)數(shù)的平均數(shù);方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量.17、-1.【解析】
因?yàn)橐辉畏匠痰某?shù)項(xiàng)是已知的,可直接利用兩根之積的等式求解.【詳解】∵一元二次方程x2+mx+1=0的一個(gè)根為-1,設(shè)另一根為x1,由根與系數(shù)關(guān)系:-1?x1=1,解得x1=-1.故答案為-1.18、【解析】
根據(jù)矩形的性質(zhì)得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據(jù)折疊得到BF=AB=5,EF=EA,根據(jù)勾股定理求出CF,由此得到DF的長(zhǎng),再根據(jù)勾股定理即可求出AE.【詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質(zhì)可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設(shè)AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【點(diǎn)睛】此題考查矩形的性質(zhì),勾股定理,折疊的性質(zhì),由折疊得到BF的長(zhǎng)度是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)2400個(gè),10天;(2)1人.【解析】
(1)設(shè)原計(jì)劃每天生產(chǎn)零件x個(gè),根據(jù)相等關(guān)系“原計(jì)劃生產(chǎn)24000個(gè)零件所用時(shí)間=實(shí)際生產(chǎn)(24000+300)個(gè)零件所用的時(shí)間”可列方程,解出x即為原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù),再代入即可求得規(guī)定天數(shù);(2)設(shè)原計(jì)劃安排的工人人數(shù)為y人,根據(jù)“(5組機(jī)器人生產(chǎn)流水線(xiàn)每天生產(chǎn)的零件個(gè)數(shù)+原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù))×(規(guī)定天數(shù)-2)=零件總數(shù)24000個(gè)”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計(jì)劃安排的工人人數(shù).【詳解】解:(1)解:設(shè)原計(jì)劃每天生產(chǎn)零件x個(gè),由題意得,,解得x=2400,經(jīng)檢驗(yàn),x=2400是原方程的根,且符合題意.∴規(guī)定的天數(shù)為24000÷2400=10(天).答:原計(jì)劃每天生產(chǎn)零件2400個(gè),規(guī)定的天數(shù)是10天.(2)設(shè)原計(jì)劃安排的工人人數(shù)為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經(jīng)檢驗(yàn),y=1是原方程的根,且符合題意.答:原計(jì)劃安排的工人人數(shù)為1人.【點(diǎn)睛】本題考查分式方程的應(yīng)用,找準(zhǔn)等量關(guān)系是本題的解題關(guān)鍵,注意分式方程結(jié)果要檢驗(yàn).20、1【解析】
原式利用絕對(duì)值的代數(shù)意義,乘方的意義,以及特殊角的三角函數(shù)值計(jì)算即可求出值.【詳解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,涉及了絕對(duì)值化簡(jiǎn)、特殊角的三角函數(shù)值,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.21、解:(1)該校班級(jí)個(gè)數(shù)為4÷20%=20(個(gè)),只有2名留守兒童的班級(jí)個(gè)數(shù)為:20﹣(2+3+4+5+4)=2(個(gè)),該校平均每班留守兒童的人數(shù)為:=4(名),補(bǔ)圖如下:(2)由(1)得只有2名留守兒童的班級(jí)有2個(gè),共4名學(xué)生.設(shè)A1,A2來(lái)自一個(gè)班,B1,B2來(lái)自一個(gè)班,有樹(shù)狀圖可知,共有12中等可能的情況,其中來(lái)自一個(gè)班的共有4種情況,則所選兩名留守兒童來(lái)自同一個(gè)班級(jí)的概率為:=.【解析】(1)首先求出班級(jí)數(shù),然后根據(jù)條形統(tǒng)計(jì)圖求出只有2名留守兒童的班級(jí)數(shù),再求出總的留守兒童數(shù),最后求出每班平均留守兒童數(shù);(2)利用樹(shù)狀圖確定可能種數(shù)和來(lái)自同一班的種數(shù),然后就能算出來(lái)自同一個(gè)班級(jí)的概率.22、(1),頂點(diǎn)坐標(biāo)(1,-4);(2)m=1;(3)①當(dāng)a>0時(shí),y2>y1,②當(dāng)a<0時(shí),y1>y2.【解析】試題分析:(1)把a(bǔ)=2,b=4代入并配方,即可求出此時(shí)二次函數(shù)圖象的頂點(diǎn)坐標(biāo);(2)由題意把(m,t)和(-m,-t)代入(1)中所得函數(shù)的解析式,解方程組即可求得m的值;(3)把點(diǎn)(1,0)代入可得b=a-2,由此可得拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn):,再分a>0和a<0兩種情況分別討論即可y1和y2的大小關(guān)系了.試題解析:(1)把a(bǔ)=2,b=4代入得:,∴此時(shí)二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(1,-4);(2)由題意,把(m,t)和(-m,-t)代入得:①,②,由①+②得:,解得:;(3)把點(diǎn)(1,0)代入得a-b-2=0,∴b=a-2,∴此時(shí)該二次函數(shù)圖象的對(duì)稱(chēng)軸為直線(xiàn):,①當(dāng)a>0時(shí),,,∵此時(shí),且拋物線(xiàn)開(kāi)口向上,∴中,點(diǎn)B距離對(duì)稱(chēng)軸更遠(yuǎn),∴y1<y2;②當(dāng)a<0時(shí),,,∵此時(shí),且拋物線(xiàn)開(kāi)口向下,∴中,點(diǎn)B距離對(duì)稱(chēng)軸更遠(yuǎn),∴y1>y2;綜上所述,當(dāng)a>0時(shí),y1<y2;當(dāng)a<0時(shí),y1>y2.點(diǎn)睛:在拋物線(xiàn)上:(1)當(dāng)拋物線(xiàn)開(kāi)口向上時(shí),拋物線(xiàn)上的點(diǎn)到對(duì)稱(chēng)軸的距離越遠(yuǎn),所對(duì)應(yīng)的函數(shù)值就越大;(2)當(dāng)拋物線(xiàn)開(kāi)口向下時(shí),拋物線(xiàn)上的點(diǎn)到對(duì)稱(chēng)軸的距離越近,所對(duì)應(yīng)的函數(shù)值就越大;23、證明見(jiàn)解析【解析】試題分析:通過(guò)全等三角形△ADE≌△CBF的對(duì)應(yīng)角相等證得∠AED=∠CFB,則由平行線(xiàn)的判定證得結(jié)論.證明:∵平行四邊形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE與△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.24、(1)(2).【解析】
(1)根據(jù)一次函數(shù)解析式求出M點(diǎn)的坐標(biāo),再把M點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式即可;(2)設(shè)點(diǎn)B到直線(xiàn)OM的距離為h,過(guò)M點(diǎn)作MC⊥y軸,垂足為C,根據(jù)一次函數(shù)解析式表示出B點(diǎn)坐標(biāo),利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長(zhǎng),再次利用三角形的面積公式可得OM?h,根據(jù)前面算的三角形面積可算出h的值.【詳解】解:(1)∵一次函數(shù)y1=﹣x﹣1過(guò)M(﹣2,m),∴m=1.∴M(﹣2,1).把M(﹣2,1)代入得:k=﹣2.∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年四川中醫(yī)藥高等專(zhuān)科學(xué)校單招職業(yè)適應(yīng)性測(cè)試題庫(kù)參考答案詳解
- 2026年哈爾濱科學(xué)技術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)及參考答案詳解1套
- 2026年婁底職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)含答案詳解
- 2026年合肥信息技術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)及答案詳解一套
- 2026年青海省海西蒙古族藏族自治州單招職業(yè)傾向性測(cè)試題庫(kù)及參考答案詳解1套
- 護(hù)士婦幼面試題目及答案
- 2022年7月國(guó)開(kāi)電大行管專(zhuān)科《監(jiān)督學(xué)》期末紙質(zhì)考試試題及答案
- 2025年畢節(jié)市“優(yōu)師計(jì)劃”畢業(yè)生專(zhuān)項(xiàng)招聘306人備考題庫(kù)及完整答案詳解一套
- 2025年中國(guó)社會(huì)科學(xué)院文化發(fā)展促進(jìn)中心年鑒與院史工作部非事業(yè)編制人員招聘?jìng)淇碱}庫(kù)及答案詳解參考
- 2025年浙江中醫(yī)藥大學(xué)臨床醫(yī)學(xué)院及直屬附屬醫(yī)院公開(kāi)招聘277人備考題庫(kù)含答案詳解
- 2025年下半年貴州遵義市市直事業(yè)單位選調(diào)56人筆試考試備考題庫(kù)及答案解析
- 2025年初級(jí)社會(huì)工作者考試《社會(huì)工作綜合能力》真題及答案解析
- 貨架租用合同范本
- 還建房出售合同范本
- 2025年無(wú)人機(jī)航拍理論題庫(kù)(含答案)
- 校園廣播站每日提醒培訓(xùn)課件
- 2026年中國(guó)人民銀行直屬事業(yè)單位招聘(60人)備考題庫(kù)帶答案解析
- 2026中儲(chǔ)糧集團(tuán)公司西安分公司招聘(43人)筆試考試參考試題及答案解析
- 2025年全國(guó)防汛抗旱知識(shí)競(jìng)賽培訓(xùn)試題附答案
- 2025年秋季學(xué)期國(guó)家開(kāi)放大學(xué)《理工英語(yǔ)4》形考任務(wù)綜合測(cè)試完整答案(不含聽(tīng)力部分)
- 2025年10月自考00420物理工試題及答案含評(píng)分參考
評(píng)論
0/150
提交評(píng)論