陜西省戶縣2024屆中考數學最后沖刺模擬試卷含解析_第1頁
陜西省戶縣2024屆中考數學最后沖刺模擬試卷含解析_第2頁
陜西省戶縣2024屆中考數學最后沖刺模擬試卷含解析_第3頁
陜西省戶縣2024屆中考數學最后沖刺模擬試卷含解析_第4頁
陜西省戶縣2024屆中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省戶縣2024屆中考數學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知函數,則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.32.剪紙是水族的非物質文化遺產之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.3.如圖,平行四邊形ABCD中,E,F分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.4.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.45.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.6.平面直角坐標系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數軸上可表示為()A. B.C. D.7.在如圖的計算程序中,y與x之間的函數關系所對應的圖象大致是()A. B. C. D.8.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)9.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)10.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.觀察下列各等式:……根據以上規(guī)律可知第11行左起第一個數是__.12.計算a10÷a5=_______.13.若不等式組的解集是﹣1<x≤1,則a=_____,b=_____.14.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.15.當2≤x≤5時,二次函數y=﹣(x﹣1)2+2的最大值為_____.16.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.17.有四張質地、大小、反面完全相同的不透明卡片,正面分別寫著數字1,2,3,4,現把它們的正面向下,隨機擺放在桌面上,從中任意抽出一張,則抽出的數字是奇數的概率是.三、解答題(共7小題,滿分69分)18.(10分)△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.如圖(1)當射線DN經過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點D沿逆時針方向旋轉,DM,DN分別交線段AC,AB于E,F點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.19.(5分)為了了解初一年級學生每學期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機抽樣調查了部分初一學生一個學期參加綜合實踐活動的天數,并用得到的數據繪制了統(tǒng)計圖①和圖②,請根據圖中提供的信息,回答下列問題:(I)本次隨機抽樣調查的學生人數為,圖①中的m的值為;(II)求本次抽樣調查獲取的樣本數據的眾數、中位數和平均數;(III)若該區(qū)初一年級共有學生2500人,請估計該區(qū)初一年級這個學期參加綜合實踐活動的天數大于4天的學生人數.20.(8分)某校為了創(chuàng)建書香校遠,計劃進一批圖書,經了解.文學書的單價比科普書的單價少20元,用800元購進的文學書本數與用1200元購進的科普書本數相等.文學書和科普書的單價分別是多少元?該校計劃用不超過5000元的費用購進一批文學書和科普書,問購進60本文學書后最多還能購進多少本科普書?21.(10分)某校有3000名學生.為了解全校學生的上學方式,該校數學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖根據以上信息,回答下列問題:參與本次問卷調查的學生共有____人,其中選擇B類的人數有____人.在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數,并補全條形統(tǒng)計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數.22.(10分)如圖,已知ABCD是邊長為3的正方形,點P在線段BC上,點G在線段AD上,PD=PG,DF⊥PG于點H,交AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.23.(12分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.24.(14分)立定跳遠是嘉興市體育中考的抽考項目之一,某校九年級(1),(2)班準備集體購買某品牌的立定跳遠訓練鞋.現了解到某網店正好有這種品牌訓練鞋的促銷活動,其購買的單價y(元/雙)與一次性購買的數量x(雙)之間滿足的函數關系如圖所示.當10≤x<60時,求y關于x的函數表達式;九(1),(2)班共購買此品牌鞋子100雙,由于某種原因需分兩次購買,且一次購買數量多于25雙且少于60雙;①若兩次購買鞋子共花費9200元,求第一次的購買數量;②如何規(guī)劃兩次購買的方案,使所花費用最少,最少多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

解:如圖:利用頂點式及取值范圍,可畫出函數圖象會發(fā)現:當x=3時,y=k成立的x值恰好有三個.故選:D.2、D【解析】

根據把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【點睛】此題主要考查了中心對稱圖形,關鍵是掌握中心對稱圖形的定義.3、B【解析】

由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.4、C【解析】

設BN=x,則由折疊的性質可得DN=AN=9-x,根據中點的定義可得BD=3,在Rt△BND中,根據勾股定理可得關于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質,得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質,勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質及勾股定理是解答本題的關鍵.5、A【解析】

連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質和含30度的直角三角形三邊的關系.6、B【解析】

根據第二象限中點的特征可得:,解得:.在數軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征7、A【解析】函數→一次函數的圖像及性質8、A【解析】

分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.9、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.10、B【解析】

根據簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.二、填空題(共7小題,每小題3分,滿分21分)11、-1.【解析】

觀察規(guī)律即可解題.【詳解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一個數比右側的數大一,∴第11行左起第一個數是-1.【點睛】本題是一道規(guī)律題,屬于簡單題,認真審題找到規(guī)律是解題關鍵.12、a1.【解析】試題分析:根據同底數冪的除法底數不變指數相減,可得答案.原式=a10-1=a1,故答案為a1.考點:同底數冪的除法.13、-2-3【解析】

先求出每個不等式的解集,再求出不等式組的解集,即可得出關于a、b的方程,求出即可.【詳解】解:由題意得:解不等式①得:x>1+a,解不等式②得:x≤不等式組的解集為:1+a<x≤不等式組的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案為:-2,-3.【點睛】本題主要考查解含參數的不等式組.14、1【解析】

在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.

故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據紅球的頻率得到相應的等量關系.15、1.【解析】

先根據二次函數的圖象和性質判斷出2≤x≤5時的增減性,然后再找最大值即可.【詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數y=﹣(x﹣1)2+2的最大值為1,故答案為:1.【點睛】本題主要考查二次函數在一定范圍內的最大值,掌握二次函數的圖象和性質是解題的關鍵.16、270【解析】

根據三角形的內角和與平角定義可求解.【詳解】解析:如圖,根據題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【點睛】本題主要考查了三角形的內角和定理和內角與外角之間的關系.要會熟練運用內角和定理求角的度數.17、【解析】試題分析:這四個數中,奇數為1和3,則P(抽出的數字是奇數)=2÷4=.考點:概率的計算.三、解答題(共7小題,滿分69分)18、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【解析】

(1)根據等腰三角形的性質以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點睛】本題考查了和相似有關的綜合性題目,用到的知識點有三角形相似的判定和性質、等腰三角形的性質以及勾股定理的運用,靈活運用相似三角形的判定定理和性質定理是解題的關鍵,解答時,要仔細觀察圖形、選擇合適的判定方法,注意數形結合思想的運用.19、(I)150、14;(II)眾數為3天、中位數為4天,平均數為3.5天;(III)700人【解析】

(I)根據1天的人數及其百分比可得總人數,總人數減去其它天數的人數即可得m的值;(II)根據眾數、中位數和平均數的定義計算可得;(III)用總人數乘以樣本中5天、6天的百分比之和可得.【詳解】解:(I)本次隨機抽樣調查的學生人數為18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案為150、14;(II)眾數為3天、中位數為第75、76個數據的平均數,即平均數為=4天,平均數為=3.5天;(III)估計該區(qū)初一年級這個學期參加綜合實踐活動的天數大于4天的學生有2500×(18%+10%)=700人.【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關鍵.20、(1)文學書的單價為40元/本,科普書的單價為1元/本;(2)購進1本文學書后最多還能購進2本科普書.【解析】

(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,根據數量=總價÷單價結合用800元購進的文學書本數與用1200元購進的科普書本數相等,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設購進m本科普書,根據總價=文學書的單價×購進本數+科普書的單價×購進本數結合總價不超過5000元,即可得出關于m的一元一次不等式,解之取其中的最大整數值即可得出結論.【詳解】解:(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,依題意,得:800x解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x+20=1.答:文學書的單價為40元/本,科普書的單價為1元/本.(2)設購進m本科普書,依題意,得:40×1+1m≤5000,解得:m≤431∵m為整數,∴m的最大值為2.答:購進1本文學書后最多還能購進2本科普書.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量之間的關系,正確列出一元一次不等式.21、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】

(1)根據“騎電動車”上下的人數除以所占的百分比,即可得到調查學生數;用調查學生數乘以選擇類的人數所占的百分比,即可求出選擇類的人數.

(2)求出類的百分比,乘以即可求出類對應的扇形圓心角的度數;由總學生數求出選擇公共交通的人數,補全統(tǒng)計圖即可;

(3)由總人數乘以“綠色出行”的百分比,即可得到結果.【詳解】(1)參與本次問卷調查的學生共有:(人);選擇類的人數有:故答案為450、63;(2)類所占的百分比為:類對應的扇形圓心角的度數為:選擇類的人數為:(人).補全條形統(tǒng)計圖為:(3)估計該校每天“綠色出行”的學生人數為3000×(1-14%-4%)=2460人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)證明見解析;(2)1.【解析】

作PM⊥AD,在四邊形ABCD和四邊形ABPM證AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;還有兩個直角即可證明△ADF≌△MPG,從而得出對應邊相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根據旋轉,得出∠EPG=90°,PE=PG從而得出四邊形PEFD為平行四邊形;根據勾股定理和等量代換求出邊長DF的值;根據相似三角形得出對應邊成比例求出GH的值,從而求出高PH的值;最后根據面積公式得出【詳解】解:(1)證明:∵四邊形ABCD為正方形,∴AD=AB,∵四邊形ABPM為矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如圖,∵PD=PG,∴MG=MD,∵四邊形ABCD為矩形,∴PCDM為矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵線段PG繞點P逆時針旋轉90°得到線段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四邊形PEFD為平行四邊形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四邊形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四邊形PEFD的面積=DF?PH=×=1.【點睛】本題考查了平行四邊形的面積、勾股定理、相似三角形判定、全等三角形性質,本題的關鍵是求邊長和高的值23、(1)證明見解析;(2).【解析】

(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據切線判定推出即可.(2)求出OP、DP長,分別求出扇形DOB和△ODP面積,即可求出答案.【詳解】解:(1)證明:連接OD,∵∠ACD=60°,∴由圓周角定理得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論