山西省運城市夏縣達標名校2024年中考數(shù)學模擬試題含解析_第1頁
山西省運城市夏縣達標名校2024年中考數(shù)學模擬試題含解析_第2頁
山西省運城市夏縣達標名校2024年中考數(shù)學模擬試題含解析_第3頁
山西省運城市夏縣達標名校2024年中考數(shù)學模擬試題含解析_第4頁
山西省運城市夏縣達標名校2024年中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省運城市夏縣達標名校2024年中考數(shù)學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某市從今年1月1日起調整居民用水價格,每立方米水費上漲.小麗家去年12月份的水費是15元,而今年5月的水費則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.2.已知關于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣33.若ab<0,則正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的大致圖象可能是()A. B. C. D.4.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°5.在﹣3,0,4,這四個數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.6.某班體育委員對本班學生一周鍛煉(單位:小時)進行了統(tǒng)計,繪制了如圖所示的折線統(tǒng)計圖,則該班這些學生一周鍛煉時間的中位數(shù)是()A.10 B.11 C.12 D.137.下列方程中,兩根之和為2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=08.如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.809.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.10.主席在2018年新年賀詞中指出,2017年,基本醫(yī)療保險已經(jīng)覆蓋1350000000人.將1350000000用科學記數(shù)法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×101411.下列一元二次方程中,有兩個不相等實數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=012.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構成完全平方式的概率是()A.1B.12C.13二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在5×5的正方形(每個小正方形的邊長為1)網(wǎng)格中,格點上有A、B、C、D、E五個點,如果要求連接兩個點之后線段的長度大于3且小于4,則可以連接_____.(寫出一個答案即可)14.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點D、E分別為AM、AB上的動點,則BD+DE的最小值是_____.15.如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____.16.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.17.點A(a,b)與點B(﹣3,4)關于y軸對稱,則a+b的值為_____.18.在平面直角坐標系中,點O為原點,平行于x軸的直線與拋物線L:y=ax1相交于A,B兩點(點B在第一象限),點C在AB的延長線上.(1)已知a=1,點B的縱坐標為1.如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,AC的長為__.(1)如圖1,若BC=AB,過O,B,C三點的拋物線L3,頂點為P,開口向下,對應函數(shù)的二次項系數(shù)為a3,=__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡(-a+1)÷,并從0,-1,2中選一個合適的數(shù)作為a的值代入求值.20.(6分)中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調查,根據(jù)調查結果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:(1)本次調查了名學生,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為度,并補全條形統(tǒng)計圖;(2)此中學共有1600名學生,通過計算預估其中4部都讀完了的學生人數(shù);(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.21.(6分)如圖,點D是AB上一點,E是AC的中點,連接DE并延長到F,使得DE=EF,連接CF.求證:FC∥AB.22.(8分)如圖,△ABC與△A1B1C1是位似圖形.(1)在網(wǎng)格上建立平面直角坐標系,使得點A的坐標為(-6,-1),點C1的坐標為(-3,2),則點B的坐標為____________;(2)以點A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1∶2;(3)在圖上標出△ABC與△A1B1C1的位似中心P,并寫出點P的坐標為________,計算四邊形ABCP的周長為_______.23.(8分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?24.(10分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).25.(10分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點

E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.26.(12分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長27.(12分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標;若△ABC的面積為4,求的解析式.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】解:設去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.2、C【解析】

根據(jù)不等式的性質得出x的解集,進而解答即可.【詳解】∵-1<2x+b<1∴,∵關于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.【點睛】此題考查解一元一次不等式組,關鍵是根據(jù)不等式的性質得出x的解集.3、D【解析】

根據(jù)ab<0及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當a>0,b<0時,正比例函數(shù)y=ax數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;(2)當a<0,b>0時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項D符合.故選D【點睛】本題主要考查了反比例函數(shù)的圖象性質和正比例函數(shù)的圖象性質,要掌握它們的性質才能靈活解題.4、A【解析】

先根據(jù)正五邊形的性質求出∠EAB的度數(shù),再由平行線的性質即可得出結論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點睛】此題考查平行線的性質,多邊形內角與外角,解題關鍵在于求出∠EAB.5、C【解析】試題分析:根據(jù)實數(shù)的大小比較法則,正數(shù)大于0,0大于負數(shù),兩個負數(shù)相比,絕對值大的反而?。虼?,在﹣3,0,1,這四個數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.6、B【解析】

根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本班的學生數(shù),從而可以求得該班這些學生一周鍛煉時間的中位數(shù),本題得以解決.【詳解】由統(tǒng)計圖可得,本班學生有:6+9+10+8+7=40(人),該班這些學生一周鍛煉時間的中位數(shù)是:11,故選B.【點睛】本題考查折線統(tǒng)計圖、中位數(shù),解答本題的關鍵是明確題意,會求一組數(shù)據(jù)的中位數(shù).7、B【解析】

由根與系數(shù)的關系逐項判斷各項方程的兩根之和即可.【詳解】在方程x2+2x-3=0中,兩根之和等于-2,故A不符合題意;在方程x2-2x-3=0中,兩根之和等于2,故B符合題意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,則該方程無實數(shù)根,故C不符合題意;在方程4x2-2x-3=0中,兩根之和等于-,故D不符合題意,故選B.【點睛】本題主要考查根與系數(shù)的關系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關鍵.8、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.9、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質及勾股定理.10、B【解析】

科學記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1350000000用科學記數(shù)法表示為:1350000000=1.35×109,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值及n的值.11、B【解析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.12、B【解析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、答案不唯一,如:AD【解析】

根據(jù)勾股定理求出,根據(jù)無理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點睛】本題考查了無理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.14、8【解析】試題分析:過B點作于點,與交于點,根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點作于點,與交于點,設AF=x,,,,(負值舍去).故BD+DE的值是8故答案為8考點:軸對稱-最短路線問題.15、(4,6),(8﹣27,6),(27,6).【解析】

分別取三個點作為定點,然后根據(jù)勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標.【詳解】解:當M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標為(4,6),當B為頂點時,AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標為(8﹣27,6);當A為頂點時,AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標為(27,6);綜上所述,M的坐標為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點睛】本題主要考查矩形的性質、坐標與圖形性質,解題關鍵是根據(jù)對等腰三角形性質的掌握和勾股定理的應用.16、1【解析】

利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點睛】本題考查二次函數(shù)基本性質中的對稱軸公式;也可用配方法解決.17、1【解析】

根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”解答即可.【詳解】解:∵點與點關于y軸對稱,∴故答案為1.【點睛】考查關于軸對稱的點的坐標特征,縱坐標不變,橫坐標互為相反數(shù).18、4﹣【解析】解:(1)當a=1時,拋物線L的解析式為:y=x1,當y=1時,1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移拋物線L使該拋物線過點B,∴AB=BC=1,∴AC=4;(1)如圖1,設拋物線L3與x軸的交點為G,其對稱軸與x軸交于Q,過B作BK⊥x軸于K,設OK=t,則AB=BC=1t,∴B(t,at1),根據(jù)拋物線的對稱性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),設拋物線L3的解析式為:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵該拋物線過點B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案為(1)4;(1)﹣.點睛:本題考查二次函數(shù)的圖象和性質.熟練掌握二次函數(shù)的性質是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1.【解析】試題分析:首先把括號的分式通分化簡,后面的分式的分子分解因式,然后約分化簡,接著計算分式的乘法,最后代入數(shù)值計算即可求解.試題解析:原式===;當a=0時,原式=1.考點:分式的化簡求值.20、(1)40、126(2)240人(3)【解析】

(1)用2部的人數(shù)10除以2部人數(shù)所占的百分比25%即可求出本次調查的學生數(shù),根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°,即可得到“1部”所在扇形的圓心角;(2)用1600乘以4部所占的百分比即可;(3)根據(jù)樹狀圖所得的結果,判斷他們選中同一名著的概率.【詳解】(1)調查的總人數(shù)為:10÷25%=40,∴1部對應的人數(shù)為40﹣2﹣10﹣8﹣6=14,則扇形統(tǒng)計圖中“1部”所在扇形的圓心角為:×360°=126°;故答案為40、126;(2)預估其中4部都讀完了的學生有1600×=240人;(3)將《西游記》、《三國演義》、《水滸傳》、《紅樓夢》分別記作A,B,C,D,畫樹狀圖可得:共有16種等可能的結果,其中選中同一名著的有4種,故P(兩人選中同一名著)==.【點睛】本題考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的綜合,用樣本估計總體,列表法或樹狀圖法求概率.解答此類題目,要善于發(fā)現(xiàn)二者之間的關聯(lián)點,即兩個統(tǒng)計圖都知道了哪個量的數(shù)據(jù),從而用條形統(tǒng)計圖中的具體數(shù)量除以扇形統(tǒng)計圖中占的百分比,求出樣本容量,進而求解其它未知的量.21、答案見解析【解析】

利用已知條件容易證明△ADE≌△CFE,得出角相等,然后利用平行線的判定可以證明FC∥AB.【詳解】解:∵E是AC的中點,∴AE=CE.在△ADE與△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.【點睛】本題主要考查了全等三角形的性質與判定,平行線的判定定理.通過全等得角相等,然后得到兩線平行時一種常用的方法,應注意掌握運用.22、(1)作圖見解析;點B的坐標為:(﹣2,﹣5);(2)作圖見解析;(3)【解析】分析:(1)直接利用已知點位置得出B點坐標即可;(2)直接利用位似圖形的性質得出對應點位置進而得出答案;(3)直接利用位似圖形的性質得出對應點交點即可位似中心,再利用勾股定理得出四邊形ABCP的周長.詳解:(1)如圖所示:點B的坐標為:(﹣2,﹣5);故答案為(﹣2,﹣5);(2)如圖所示:△AB2C2,即為所求;(3)如圖所示:P點即為所求,P點坐標為:(﹣2,1),四邊形ABCP的周長為:+++=4+2+2+2=6+4.故答案為6+4.點睛:本題主要考查了位似變換以及勾股定理,正確利用位似圖形的性質分析是解題的關鍵.23、(1)2000;(2)2米【解析】

(1)設未知數(shù),根據(jù)題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.24、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.25、(1);(2)與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解析】

利用二次函數(shù)圖象上點的坐標特征可得出點A、B的坐標,結合即可得出關于a的一元一次方程,解之即可得出結論;由點A、B的坐標可得出直線AB的解析式待定系數(shù)法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結合即可得出S關于x的函數(shù)關系式,再利用二次函數(shù)的性質即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當時,利用等腰直角三角形的性質可得出,進而可得出關于m的一元二次方程,解之取其非零值即可得出結論;當時,由點B的縱坐標可得出點E的縱坐標為4,結合點E的坐標即可得出關于m的一元二次方程,解之取其非零值即可得出結論綜上即可得出結論.【詳解】當時,有,解得:,,點A的坐標為.當時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A的坐標為,點B的坐標為,,,,.,當時,S取最大值,最大值為18,此時點E的坐標為,與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.,,若要和相似,只需或如圖.設點D的坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論