湖南省長郡中學2024年高三第六次模擬考試數(shù)學試卷含解析_第1頁
湖南省長郡中學2024年高三第六次模擬考試數(shù)學試卷含解析_第2頁
湖南省長郡中學2024年高三第六次模擬考試數(shù)學試卷含解析_第3頁
湖南省長郡中學2024年高三第六次模擬考試數(shù)學試卷含解析_第4頁
湖南省長郡中學2024年高三第六次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省長郡中學2024年高三第六次模擬考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.52.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.3.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件4.函數(shù)的對稱軸不可能為()A. B. C. D.5.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.36.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題7.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣858.半徑為2的球內(nèi)有一個內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.9.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.10.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.11.已知復數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣212.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.14.已知函數(shù)為偶函數(shù),則_____.15.已知函數(shù)f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.16.在棱長為6的正方體中,是的中點,點是面,所在平面內(nèi)的動點,且滿足,則三棱錐的體積的最大值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.18.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.19.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當時,求證:.20.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.21.(12分)隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調(diào)查廣大市民理財產(chǎn)品的選擇情況,隨機抽取1200名使用理財產(chǎn)品的市民,按照使用理財產(chǎn)品的情況統(tǒng)計得到如下頻數(shù)分布表:分組頻數(shù)(單位:名)使用“余額寶”使用“財富通”使用“京東小金庫”30使用其他理財產(chǎn)品50合計1200已知這1200名市民中,使用“余額寶”的人比使用“財富通”的人多160名.(1)求頻數(shù)分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為.若在1200名使用理財產(chǎn)品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機選取2人,假設(shè)這2人中每個人理財?shù)馁Y金有10000元,這2名市民2018年理財?shù)睦⒖偤蜑?,求的分布列及?shù)學期望.注:平均年化收益率,也就是我們所熟知的利息,理財產(chǎn)品“平均年化收益率為”即將100元錢存入某理財產(chǎn)品,一年可以獲得3元利息.22.(10分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設(shè)直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.2、D【解析】

說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).3、D【解析】

對于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應(yīng)用,涉及知識點有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡單題.4、D【解析】

由條件利用余弦函數(shù)的圖象的對稱性,得出結(jié)論.【詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.5、A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ).6、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.7、D【解析】

由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8、B【解析】

設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.9、B【解析】

根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設(shè),則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長為,用建立體積與邊長的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.10、C【解析】

設(shè)出兩人到達小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設(shè)小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.11、D【解析】

化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.12、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據(jù)拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據(jù)雙曲線定義得到實軸長,結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設(shè)直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標.14、【解析】

根據(jù)偶函數(shù)的定義列方程,化簡求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運算求解能力,屬于中檔題.15、0【解析】

由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯(lián)立①②解得:..故答案為:0.【點睛】本題考查導數(shù)的幾何意義,屬于基礎(chǔ)題.16、【解析】

根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內(nèi)的動點,且滿足,又,∴與相似∴,即,過作于,設(shè),,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)先將曲線化為普通方程,再由直角坐標系與極坐標系之間的轉(zhuǎn)化關(guān)系:,可得極坐標方程和曲線的直角坐標方程;(2)由已知可得出射線的極坐標方程為,聯(lián)立和的極坐標方程可得點A和點B的極坐標,從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標方程為;曲線的極坐標方程為,即,其直角坐標方程為;(2)射線的極坐標方程為,聯(lián)立,聯(lián)立,的取值范圍是【點睛】本題考查圓的參數(shù)方程與普通方程互化,圓,拋物線的極坐標方程與普通方程的互化,以及在極坐標下的直線與圓和拋物線的位置關(guān)系,屬于中檔題.18、(1);(2)【解析】

(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設(shè)直線的方程為,易知,可得點的坐標為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結(jié)合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點的坐標為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學生的計算求解能力,屬于難題.19、(1)見解析(2)見解析【解析】

(1)根據(jù)的導函數(shù)進行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當時,由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當時,,所以在上單調(diào)遞增;④當時,由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因為,所以,所以.即,所以當時,成立.【點睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.20、(1)或;(2).【解析】

(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數(shù)的單調(diào)性可得的最小值,通過恒成立問題,得到關(guān)于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據(jù)函數(shù)的單調(diào)性可知函數(shù)的最小值為,因為恒成立,所以,解得.所以實數(shù)的取值范圍是.【點睛】本題考查分類討論去絕

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論