山西省農業(yè)大附屬中學2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第1頁
山西省農業(yè)大附屬中學2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第2頁
山西省農業(yè)大附屬中學2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第3頁
山西省農業(yè)大附屬中學2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第4頁
山西省農業(yè)大附屬中學2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省農業(yè)大附屬中學2023-2024學年中考考前最后一卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列運算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a32.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.3.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)4.下列事件中,必然事件是()A.拋擲一枚硬幣,正面朝上B.打開電視,正在播放廣告C.體育課上,小剛跑完1000米所用時間為1分鐘D.袋中只有4個球,且都是紅球,任意摸出一球是紅球5.下列命題中錯誤的有()個(1)等腰三角形的兩個底角相等(2)對角線相等且互相垂直的四邊形是正方形(3)對角線相等的四邊形為矩形(4)圓的切線垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.46.下列運算正確的是()A.a(chǎn)2+a3=a5 B.(a3)2÷a6=1 C.a(chǎn)2?a3=a6 D.(2+3)2=57.函數(shù)的圖象上有兩點,,若,則()A. B. C. D.、的大小不確定8.甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.1.其中說法正確的有()A.4個 B.3個 C.2個 D.1個9.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經(jīng)過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.210.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點P是CD中點,BP與半圓交于點Q,連結DQ.給出如下結論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結論是_________.(填寫序號)12.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機取出一個白球的概率是2313.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.14.如圖,正△ABC的邊長為2,點A、B在半徑為2的圓上,點C在圓內,將正ΔABC繞點A逆時針針旋轉,當點C第一次落在圓上時,旋轉角的正切值為_______________15.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯(lián)結PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.16.拋物線y=﹣x2+4x﹣1的頂點坐標為.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.18.(8分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總人數(shù)為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?19.(8分)如圖,平面直角坐標系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設P(1,n).求直線AB的解析式和點B的坐標;求△ABP的面積(用含n的代數(shù)式表示);當S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.20.(8分)全民學習、終身學習是學習型社會的核心內容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學習時間不少于1小時的約有多少個家庭?21.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.22.(10分)如圖,平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,與反比例函數(shù)的圖象交于點.求反比例函數(shù)的表達式;若點C在反比例函數(shù)的圖象上,點D在x軸上,當四邊形ABCD是平行四邊形時,求點D的坐標.23.(12分)解不等式組請結合題意填空,完成本題的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在數(shù)軸上表示出來:(IV)原不等式組的解集為.24.如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;

B、a?a2=a3,故該選項錯誤;

C、(a2)3=a6,故該選項錯誤;

D、(3a)3=27a3,故該選項錯誤;

故選A.【點睛】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關鍵是掌握相關運算法則.2、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數(shù)中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內含,此時圓心距<大圓半徑-小圓半徑.3、C【解析】

當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,

解得:x=0,

故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).4、D【解析】試題解析:A.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;B.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;C.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;D.袋中只有4個球,且都是紅球,任意摸出一球是紅球,是必然事件,符合題意.故選D.點睛:事件分為確定事件和不確定事件.必然事件和不可能事件叫做確定事件.5、D【解析】分析:根據(jù)等腰三角形的性質、正方形的判定定理、矩形的判定定理、切線的性質、垂徑定理判斷即可.詳解:等腰三角形的兩個底角相等,(1)正確;對角線相等、互相平分且互相垂直的四邊形是正方形,(2)錯誤;對角線相等的平行四邊形為矩形,(3)錯誤;圓的切線垂直于過切點的半徑,(4)錯誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯誤.故選D.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.6、B【解析】

利用合并同類項對A進行判斷;根據(jù)冪的乘方和同底數(shù)冪的除法對B進行判斷;根據(jù)同底數(shù)冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【點睛】本題考查同底數(shù)冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關鍵是在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.7、A【解析】

根據(jù)x1、x1與對稱軸的大小關系,判斷y1、y1的大小關系.【詳解】解:∵y=-1x1-8x+m,∴此函數(shù)的對稱軸為:x=-=-=-1,∵x1<x1<-1,兩點都在對稱軸左側,a<0,∴對稱軸左側y隨x的增大而增大,∴y1<y1.故選A.【點睛】此題主要考查了函數(shù)的對稱軸求法和函數(shù)的單調性,利用二次函數(shù)的增減性解題時,利用對稱軸得出是解題關鍵.8、B【解析】

根據(jù)題意,兩車距離為函數(shù),由圖象可知兩車起始距離為80,從而得到乙車速度,根據(jù)圖象變化規(guī)律和兩車運動狀態(tài),得到相關未知量.【詳解】由圖象可知,乙出發(fā)時,甲乙相距80km,2小時后,乙車追上甲.則說明乙每小時比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時,乙由相遇點到達B,用時4小時,每小時比甲快40km,則此時甲乙距離4×40=160km,則m=160,②正確;當乙在B休息1h時,甲前進80km,則H點坐標為(7,80),③正確;乙返回時,甲乙相距80km,到兩車相遇用時80÷(120+80)=0.4小時,則n=6+1+0.4=7.4,④錯誤.故選B.【點睛】本題以函數(shù)圖象為背景,考查雙動點條件下,兩點距離與運動時間的函數(shù)關系,解答時既要注意圖象變化趨勢,又要關注動點的運動狀態(tài).9、C【解析】

根據(jù)題意得出旋轉后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經(jīng)過(1.﹣1),∴設旋轉后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關鍵是求出旋轉后的函數(shù)解析式.本題屬于基礎題,難度不大.10、A【解析】

∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②④【解析】

①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;

②連接AQ,如圖4,根據(jù)勾股定理可求出BP.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求出BQ,從而求出PQ的值,就可得到的值;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求出QH,從而可求出S△DPQ的值;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運用三角函數(shù)的定義,就可求出cos∠ADQ的值.【詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求得BQ=,則PQ=,∴.故②正確;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求得QH=,∴S△DPQ=DP?QH=××=.故③錯誤;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結論是①②④.故答案為:①②④.【點睛】本題主要考查了圓周角定理、平行四邊形的判定與性質、相似三角形的判定與性質、全等三角形的判定與性質、平行線分線段成比例、等腰三角形的性質、平行線的性質、銳角三角函數(shù)的定義、勾股定理等知識,綜合性比較強,常用相似三角形的性質、勾股定理、三角函數(shù)的定義來建立等量關系,應靈活運用.12、1.【解析】

先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機事件A的概率PA=事件13、50°【解析】

先根據(jù)三角形外角的性質求出∠BEF的度數(shù),再根據(jù)平行線的性質得到∠2的度數(shù).【詳解】如圖所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【點睛】考查了平行線的性質,解題的關鍵是掌握、運用三角形外角的性質(三角形的一個外角等于與它不相鄰的兩個內角的和).14、3【解析】

作輔助線,首先求出∠DAC的大小,進而求出旋轉的角度,即可得出答案.【詳解】如圖,分別連接OA、OB、OD;∵OA=OB=2,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可證:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°?60°=30°,∴旋轉角的正切值是33故答案為:33【點睛】此題考查等邊三角形的性質,旋轉的性質,點與圓的位置關系,解直角三角形,解題關鍵在于作輔助線.15、2【解析】

由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【點睛】本題考查的知識點是圓的性質,解題的關鍵是熟練的掌握圓的性質.16、(2,3)【解析】試題分析:利用配方法將拋物線的解析式y(tǒng)=﹣x2+4x﹣1轉化為頂點式解析式y(tǒng)=﹣(x﹣2)2+3,然后求其頂點坐標為:(2,3).考點:二次函數(shù)的性質三、解答題(共8題,共72分)17、(1)見解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質得出AF=CF,設AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點睛】本題考查了勾股定理,矩形性質,平行四邊形的判定,菱形的判定,全等三角形的性質和判定,平行線的性質等知識點的綜合運用,用了方程思想.18、(1)80、72;(2)16人;(3)50人【解析】

(1)用步行人數(shù)除以其所占的百分比即可得到樣本總人數(shù):810%=80(人);用總人數(shù)乘以開私家車的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據(jù)扇形統(tǒng)計圖算出騎自行車的所占百分比,再用總人數(shù)乘以該百分比即可求出騎自行車的人數(shù),補全條形圖即可.(3)依題意設原來開私家車的人中有x人改為騎自行車,用x分別表示改變出行方式后的騎自行車和開私家車的人數(shù),根據(jù)題意列出一元一次不等式,解不等式即可.【詳解】解:(1)樣本中的總人數(shù)為8÷10%=80人,∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,∴扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為360°×20%=72°(2)騎自行車的人數(shù)為80×20%=16人,補全圖形如下:(3)設原來開私家車的人中有x人改騎自行車,由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【點睛】本題主要考查統(tǒng)計圖表和一元一次不等式的應用。19、(1)AB的解析式是y=-x+1.點B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標;(2)過點A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當y=0時,0=-x+1,解得x=3,∴點B(3,0).(2)過點A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點B(3,0),可知點B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當S△ABP=2時,n-1=2,解得n=2,∴點P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點C作CN⊥直線x=1于點N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點C作CF⊥x軸于點F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點C的坐標是(3,4)或(5,2)或(3,2).考點:一次函數(shù)綜合題.20、(1)200;(2)見解析;(3)36;(4)該社區(qū)學習時間不少于1小時的家庭約有2100個.【解析】

(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調查的總家庭數(shù);(2)用抽查的總人數(shù)乘以學習0.5-1小時的家庭所占的百分比求出學習0.5-1小時的家庭數(shù),再用總人數(shù)減去其它家庭數(shù),求出學習2-2.5小時的家庭數(shù),從而補全統(tǒng)計圖;(3)用360°乘以學習時間在2~2.5小時所占的百分比,即可求出學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學習時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學習0.5﹣1小時的家庭數(shù)有:200×=60(個),學習2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補圖如下:(3)學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:3000×=2100(個).答:該社區(qū)學習時間不少于1小時的家庭約有2100個.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖及相關計算.在扇形統(tǒng)計圖中,每部分占總部分的百分比等于該部分所對應的扇形圓心角的度數(shù)與360°的比.21、(30+30)米.【解析】

解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米22、(1)y=(1)(1,0)【解析】

(1)將點M的坐標代入一次函數(shù)解析式求得a的值;然后將點M的坐標代入反比例函數(shù)解析式,求得k的值即可;(1)根據(jù)平行四邊形的性質得到BC∥AD且BD=AD,結合圖形與坐標的性質求得點D的坐標.【詳解】解:(1)∵點M(a,4)在直線y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),將其代入y=得到:k=xy=1×4=4,∴反比例函數(shù)y=(x>0)的表達式為y=;(1)∵平面直角坐標系中,直線y=1x+1與x軸,y軸分別交于A,B兩點,∴當x=0時,y=1.當y=0時,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴點C的縱坐標也等于1,且點C在反比例函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論