江蘇省寶應(yīng)中學(xué)2024屆高考數(shù)學(xué)一模試卷含解析_第1頁(yè)
江蘇省寶應(yīng)中學(xué)2024屆高考數(shù)學(xué)一模試卷含解析_第2頁(yè)
江蘇省寶應(yīng)中學(xué)2024屆高考數(shù)學(xué)一模試卷含解析_第3頁(yè)
江蘇省寶應(yīng)中學(xué)2024屆高考數(shù)學(xué)一模試卷含解析_第4頁(yè)
江蘇省寶應(yīng)中學(xué)2024屆高考數(shù)學(xué)一模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省寶應(yīng)中學(xué)2024屆高考數(shù)學(xué)一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是函數(shù)圖象上的一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.2.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}3.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)4.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知集合,,,則集合()A. B. C. D.6.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.7.已知等差數(shù)列的前13項(xiàng)和為52,則()A.256 B.-256 C.32 D.-328.已知,且,則的值為()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.10.下列幾何體的三視圖中,恰好有兩個(gè)視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長(zhǎng)寬高互不相等的長(zhǎng)方體11.若集合,,則()A. B. C. D.12.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的不等式對(duì)于任意恒成立,則實(shí)數(shù)的取值范圍為_(kāi)________.14.如圖,在平行四邊形中,,,則的值為_(kāi)____.15.已知F為雙曲線的右焦點(diǎn),過(guò)F作C的漸近線的垂線FD,D為垂足,且(O為坐標(biāo)原點(diǎn)),則C的離心率為_(kāi)_______.16.某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點(diǎn),求的值.18.(12分)已知橢圓:(),四點(diǎn),,,中恰有三點(diǎn)在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點(diǎn)分別為.是橢圓上異于的動(dòng)點(diǎn),求的正切的最大值.19.(12分)已知橢圓,左、右焦點(diǎn)為,點(diǎn)為上任意一點(diǎn),若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動(dòng)直線過(guò)點(diǎn)與交于兩點(diǎn),在軸上是否存在定點(diǎn),使成立,說(shuō)明理由.20.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.21.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.22.(10分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過(guò)點(diǎn)且傾斜角為.(1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點(diǎn),求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先畫(huà)出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.2、D【解析】

解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧希蔬x:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.3、C【解析】

由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.4、C【解析】

化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.5、D【解析】

根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點(diǎn)睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.6、C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.7、A【解析】

利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點(diǎn)睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.8、A【解析】

由及得到、,進(jìn)一步得到,再利用兩角差的正切公式計(jì)算即可.【詳解】因?yàn)?,所以,又,所以,,所?故選:A.【點(diǎn)睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.9、B【解析】

運(yùn)行程序,依次進(jìn)行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時(shí),再次循環(huán)輸出的,,此時(shí),循環(huán)結(jié)束,輸出,故選:B【點(diǎn)睛】本題主要考查程序框圖的相關(guān)知識(shí),經(jīng)過(guò)幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.10、C【解析】

根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個(gè)三視圖都是相等的正方形,球的三個(gè)三視圖都是相等的圓,圓錐的三個(gè)三視圖有一個(gè)是圓,另外兩個(gè)是全等的等腰三角形,長(zhǎng)寬高互不相等的長(zhǎng)方體的三視圖是三個(gè)兩兩不全等的矩形.故選:C.【點(diǎn)睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關(guān)鍵.11、A【解析】

用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.12、B【解析】

先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫(xiě)出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先將不等式對(duì)于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對(duì)于任意恒成立,即,又因?yàn)椋?,?duì)任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時(shí)等號(hào)成立,又因?yàn)樵趦?nèi)有解,,則,即:,所以實(shí)數(shù)的取值范圍:.故答案為:.【點(diǎn)睛】本題考查不等式恒成立問(wèn)題,利用分離參數(shù)法和構(gòu)造函數(shù),通過(guò)求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計(jì)算能力.14、【解析】

根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題.15、2【解析】

求出焦點(diǎn)到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是求出焦點(diǎn)到漸近線的距離,從而得出一個(gè)關(guān)于的等式.16、【解析】

對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,分析各種情況下個(gè)學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個(gè)人組和個(gè)人組.①若新加入的學(xué)生是士兵,則可以將這個(gè)人分組如下;名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對(duì)稱性可知也可以是司令;②若新加入的學(xué)生是排長(zhǎng),則可以將這個(gè)人分組如下:名士兵;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名排長(zhǎng).所以新加入的學(xué)生可以是排長(zhǎng),由對(duì)稱性可知也可以是軍長(zhǎng);③若新加入的學(xué)生是連長(zhǎng),則可以將這個(gè)人分組如下:名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令.所以新加入的學(xué)生可以是連長(zhǎng),由對(duì)稱性可知也可以是師長(zhǎng);④若新加入的學(xué)生是營(yíng)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是營(yíng)長(zhǎng),由對(duì)稱性可知也可以是旅長(zhǎng);⑤若新加入的學(xué)生是團(tuán)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名團(tuán)長(zhǎng).所以新加入的學(xué)生可以是團(tuán)長(zhǎng).綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點(diǎn)睛】本題考查分類計(jì)數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,屬于中等題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達(dá)定理,,即可求得結(jié)果.【詳解】(1)因?yàn)?,,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點(diǎn)睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,難度一般.18、(1);(2)【解析】

(1)分析可得必在橢圓上,不在橢圓上,代入即得解;(2)設(shè)直線PA,PB的傾斜角分別為,斜率為,可得.則,,利用均值不等式,即得解.【詳解】(1)因?yàn)殛P(guān)于軸對(duì)稱,所以必在橢圓上,∴不在橢圓上∴,,即.(2)設(shè)橢圓上的點(diǎn)(),設(shè)直線PA,PB的傾斜角分別為,斜率為又∴.,,(不妨設(shè)).故當(dāng)且僅當(dāng),即時(shí)等號(hào)成立【點(diǎn)睛】本題考查了直線和橢圓綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.19、(1)(2)存在;詳見(jiàn)解析【解析】

(1)由橢圓的性質(zhì)得,解得后可得,從而得橢圓方程;(2)設(shè),當(dāng)直線斜率存在時(shí),設(shè)為,代入橢圓方程,整理后應(yīng)用韋達(dá)定理得,代入=0由恒成立問(wèn)題可求得.驗(yàn)證斜率不存在時(shí)也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設(shè)當(dāng)直線斜率存在時(shí),設(shè)為與橢圓方程聯(lián)立得,顯然所以因?yàn)榛?jiǎn)解得即所以此時(shí)存在定點(diǎn)滿足題意當(dāng)直線斜率不存在時(shí),顯然也滿足綜上所述,存在定點(diǎn),使成立【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓相交問(wèn)題中的定點(diǎn)問(wèn)題,解題方法是設(shè)而不求的思想方法.設(shè)而不求思想方法是直線與圓錐曲線相交問(wèn)題中常用方法,只要涉及交點(diǎn)坐標(biāo),一般就用此法.20、(1)(2)【解析】

(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對(duì)分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時(shí),,由此可知,的解集為(2)當(dāng)時(shí),的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時(shí),,且,不恒成立,不符合題意.當(dāng)時(shí),,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查根據(jù)絕對(duì)值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.21、(1)證明見(jiàn)解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點(diǎn)D,連接BD,以B為原點(diǎn),以,,的方向分別為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論