山西省長治市壺關(guān)縣2024屆中考試題猜想數(shù)學(xué)試卷含解析_第1頁
山西省長治市壺關(guān)縣2024屆中考試題猜想數(shù)學(xué)試卷含解析_第2頁
山西省長治市壺關(guān)縣2024屆中考試題猜想數(shù)學(xué)試卷含解析_第3頁
山西省長治市壺關(guān)縣2024屆中考試題猜想數(shù)學(xué)試卷含解析_第4頁
山西省長治市壺關(guān)縣2024屆中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省長治市壺關(guān)縣2024屆中考試題猜想數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.52.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.3233.在△ABC中,∠C=90°,,那么∠B的度數(shù)為()A.60° B.45° C.30° D.30°或60°4.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米5.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣36.《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得()A.B.C.D.7.下列實數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π8.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)9.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,1510.下列四個幾何體中,左視圖為圓的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:|﹣3|+(﹣1)2=.12.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時間忽略不計),小剛與學(xué)校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學(xué)校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.13.要使分式有意義,則x的取值范圍為_________.14.如圖所示,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則S△BDE:S四邊形DECA的值為_____.15.將一張長方形紙片折疊成如圖所示的形狀,則∠ABC=_________.16.分解因式:x2y﹣2xy2+y3=_____.三、解答題(共8題,共72分)17.(8分)“六一”兒童節(jié)前夕,某縣教育局準備給留守兒童贈送一批學(xué)習(xí)用品,先對紅星小學(xué)的留守兒童人數(shù)進行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)該校有_____個班級,補全條形統(tǒng)計圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學(xué)共有60個教學(xué)班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.18.(8分)P是外一點,若射線PC交于點A,B兩點,則給出如下定義:若,則點P為的“特征點”.當?shù)陌霃綖?時.在點、、中,的“特征點”是______;點P在直線上,若點P為的“特征點”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點M,N,若線段MN上的所有點都不是的“特征點”,直接寫出點C的橫坐標的取值范圍.19.(8分)某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.根據(jù)以上信息,解答下列問題:(1)這次調(diào)查一共抽取了名學(xué)生,其中安全意識為“很強”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是;(2)請將條形統(tǒng)計圖補充完整;(3)該校有1800名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學(xué)生約有名.20.(8分)給定關(guān)于x的二次函數(shù)y=kx2﹣4kx+3(k≠0),當該二次函數(shù)與x軸只有一個公共點時,求k的值;當該二次函數(shù)與x軸有2個公共點時,設(shè)這兩個公共點為A、B,已知AB=2,求k的值;由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時得出以下結(jié)論:①與y軸的交點不變;②對稱軸不變;③一定經(jīng)過兩個定點;請判斷以上結(jié)論是否正確,并說明理由.21.(8分)對于某一函數(shù)給出如下定義:若存在實數(shù)m,當其自變量的值為m時,其函數(shù)值等于﹣m,則稱﹣m為這個函數(shù)的反向值.在函數(shù)存在反向值時,該函數(shù)的最大反向值與最小反向值之差n稱為這個函數(shù)的反向距離.特別地,當函數(shù)只有一個反向值時,其反向距離n為零.例如,圖中的函數(shù)有4,﹣1兩個反向值,其反向距離n等于1.(1)分別判斷函數(shù)y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數(shù)y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數(shù)y=請直接寫出這個函數(shù)的反向距離的所有可能值,并寫出相應(yīng)m的取值范圍.22.(10分)進入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包.試確定周銷售量y(包)與售價x(元/包)之間的函數(shù)關(guān)系式;試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關(guān)系式,并直接寫出售價x的范圍;當售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?23.(12分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.24.如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

先利用直角三角形的性質(zhì)求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質(zhì)和中位線定理,解題關(guān)鍵是尋找EF與題目已知長度的線段的數(shù)量關(guān)系.2、B【解析】

根據(jù)菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.【點睛】本題考查了菱形的性質(zhì),并靈活掌握及運用菱形的性質(zhì)3、C【解析】

根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質(zhì),熟記特殊角的三角函數(shù)值是解答本題的突破點.4、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.5、A【解析】

用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數(shù)加法的運算,解題的關(guān)鍵是要熟練掌握:“先符號,后絕對值”.6、D【解析】

根據(jù)題意可得等量關(guān)系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據(jù)等量關(guān)系列出方程組即可.【詳解】設(shè)每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.7、D【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、﹣5是整數(shù),是有理數(shù),選項錯誤;B、是分數(shù),是有理數(shù),選項錯誤;C、0是整數(shù),是有理數(shù),選項錯誤;D、π是無理數(shù),選項正確.故選D.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.9、D【解析】

將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.10、A【解析】

根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.【解析】

|﹣3|+(﹣1)2=4,故答案為4.12、①②③【解析】

由公交車在7至12分鐘時間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學(xué)校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數(shù)的應(yīng)用.13、x≠1【解析】由題意得x-1≠0,∴x≠1.故答案為x≠1.14、1:1【解析】

根據(jù)題意得到BE:EC=1:3,證明△BED∽△BCA,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=()2=1:16,∴S△BDE:S四邊形DECA=1:1,故答案為1:1.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.15、73°【解析】試題解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.16、y(x﹣y)2【解析】

原式提取公因式,再利用完全平方公式分解即可【詳解】x2y﹣2xy2+y3=y(tǒng)(x2-2xy+y2)=y(x-y)2.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握運算法則是解本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解析】

(1)根據(jù)有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數(shù),再求出有8名留守兒童班級的個數(shù),進而補全條形統(tǒng)計圖;(2)將這組數(shù)據(jù)按照從小到大排列即可求得統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)利用班級數(shù)60乘以(2)中求得的平均數(shù)即可.【詳解】解:(1)該校的班級數(shù)是:2÷2.5%=16(個).則人數(shù)是8名的班級數(shù)是:16﹣1﹣2﹣6﹣2=5(個).條形統(tǒng)計圖補充如下圖所示:故答案為16;(2)每班的留守兒童的平均數(shù)是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數(shù)據(jù)按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數(shù)據(jù)的眾數(shù)是10,中位數(shù)是(8+10)÷2=3.即統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)該鎮(zhèn)小學(xué)生中,共有留守兒童60×3=1(名).答:該鎮(zhèn)小學(xué)生中共有留守兒童1名.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。部疾榱似骄鶖?shù)、中位數(shù)和眾數(shù)以及用樣本估計總體.18、(1)①、;②(2)或,.【解析】

據(jù)若,則點P為的“特征點”,可得答案;根據(jù)若,則點P為的“特征點”,可得,根據(jù)等腰直角三角形的性質(zhì),可得答案;根據(jù)垂線段最短,可得PC最短,根據(jù)等腰直角三角形的性質(zhì),可得,根據(jù)若,則點P為的“特征點”,可得答案.【詳解】解:,,點是的“特征點”;,,點是的“特征點”;,,點不是的“特征點”;故答案為、如圖1,在上,若存在的“特征點”點P,點O到直線的距離.直線交y軸于點E,過O作直線于點H.因為.在中,可知.可得同理可得.的取值范圍是:如圖2,設(shè)C點坐標為,直線,.,,,..,線段MN上的所有點都不是的“特征點”,,即,解得或,點C的橫坐標的取值范圍是或,.故答案為:(1)①、;②(2)或,.【點睛】本題考查一次函數(shù)綜合題,解的關(guān)鍵是利用若,則點P為的“特征點”;解的關(guān)鍵是利用等腰直角三角形的性質(zhì)得出OE的長;解的關(guān)鍵是利用等腰直角三角形的性質(zhì)得出,又利用了.19、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識分“一般”的人數(shù)除以安全意識分“一般”的人數(shù)所占的百分比即可得這次調(diào)查一共抽取的學(xué)生人數(shù);用安全意識分“很強”的人數(shù)除以這次調(diào)查一共抽取的學(xué)生人數(shù)即可得安全意識“很強”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比;(2)用這次調(diào)查一共抽取的學(xué)生人數(shù)乘以安全意識分“較強”的人數(shù)所占的百分比即可得安全意識分“較強”的人數(shù),在條形統(tǒng)計圖上畫出即可;(3)用總?cè)藬?shù)乘以安全意識為“淡薄”、“一般”的學(xué)生一共所占的百分比即可得全校需要強化安全教育的學(xué)生的人數(shù).試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補全統(tǒng)計圖如下:(3)1800×=1人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;用樣本估計總體.20、(1)(2)1(3)①②③【解析】

(1)由拋物線與x軸只有一個交點,可知△=0;(2)由拋物線與x軸有兩個交點且AB=2,可知A、B坐標,代入解析式,可得k值;(3)通過解析式求出對稱軸,與y軸交點,并根據(jù)系數(shù)的關(guān)系得出判斷.【詳解】(1)∵二次函數(shù)y=kx2﹣4kx+3與x軸只有一個公共點,∴關(guān)于x的方程kx2﹣4kx+3=0有兩個相等的實數(shù)根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=,k≠0,∴k=;(2)∵AB=2,拋物線對稱軸為x=2,∴A、B點坐標為(1,0),(3,0),將(1,0)代入解析式,可得k=1,(3)①∵當x=0時,y=3,∴二次函數(shù)圖象與y軸的交點為(0,3),①正確;②∵拋物線的對稱軸為x=2,∴拋物線的對稱軸不變,②正確;③二次函數(shù)y=kx2﹣4kx+3=k(x2﹣4x)+3,將其看成y關(guān)于k的一次函數(shù),令k的系數(shù)為0,即x2﹣4x=0,解得:x1=0,x2=4,∴拋物線一定經(jīng)過兩個定點(0,3)和(4,3),③正確.綜上可知:正確的結(jié)論有①②③.【點睛】本題考查了二次函數(shù)的性質(zhì),與x、y軸的交點問題,對稱軸問題,以及系數(shù)與圖象的關(guān)系問題,是一道很好的綜合問題.21、(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b=±1;②0≤n≤8;(3)當m>2或m≤﹣2時,n=2,當﹣2<m≤2時,n=2.【解析】

(1)根據(jù)題目中的新定義可以分別計算出各個函數(shù)是否有方向值,有反向值的可以求出相應(yīng)的反向距離;(2)①根據(jù)題意可以求得相應(yīng)的b的值;②根據(jù)題意和b的取值范圍可以求得相應(yīng)的n的取值范圍;(3)根據(jù)題目中的函數(shù)解析式和題意可以解答本題.【詳解】(1)由題意可得,當﹣m=﹣m+1時,該方程無解,故函數(shù)y=﹣x+1沒有反向值,當﹣m=時,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距離為2,當﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距離是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距離為零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴當x≥m時,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;當x<m時,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,當m>2或m≤﹣2時,n=2,當﹣2<m≤2時,n=2.【點睛】本題是一道二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題目中的新定義,找出所求問題需要的條件,利用新定義解答相關(guān)問題.22、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫出y與x之間的函數(shù)關(guān)系式;(2)根據(jù)題意可以直接寫出w與x之間的函數(shù)關(guān)系式,由供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務(wù)可以確定x的取值范圍;(3)根據(jù)第(2)問中的函數(shù)解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價x(元/包)之間的函數(shù)關(guān)系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關(guān)系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項系數(shù)﹣5<0,∴x=45時,w取得最大值,最大值為1.答:當售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤最大,最大利潤是1元.點睛:本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是明確題意,可以寫出相應(yīng)的函數(shù)解析式,并確定自變量的取值范圍以及可以求出函數(shù)的最值.23、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據(jù)題意求出點C的坐標,然后將點C和點B的坐標代入直線解析式求出a和b的值;(2)、根據(jù)題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進行計算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進行計算得出t的值.試題解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論