版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年浙江省寧波市鄞州區(qū)實驗中學中考數(shù)學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.62.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1023.某單位組織職工開展植樹活動,植樹量與人數(shù)之間關系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵4.計算3×(﹣5)的結果等于()A.﹣15B.﹣8C.8D.155.若關于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥36.下列“數(shù)字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個7.一次函數(shù)y=2x+1的圖像不經(jīng)過(
)A.第一象限B.第二象限C.第三象限D.第四象限8.已知為單位向量,=,那么下列結論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反9.cos30°的相反數(shù)是()A. B. C. D.10.如圖,在邊長為6的菱形中,,以點為圓心,菱形的高為半徑畫弧,交于點,交于點,則圖中陰影部分的面積是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知一個正六邊形的邊心距為,則它的半徑為______.12.方程組的解一定是方程_____與_____的公共解.13.如圖是一本折扇,其中平面圖是一個扇形,扇面ABDC的寬度AC是管柄長OA的一半,已知OA=30cm,∠AOB=120°,則扇面ABDC的周長為_____cm14.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=6,AB=10,OD⊥BC于點D,則OD的長為______.15.二次函數(shù)的圖象與y軸的交點坐標是________.16.若4a+3b=1,則8a+6b-3的值為______.17.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點,把矩形ABCD沿BE折疊,若點A恰好落在CD上點F處,則AE的長為_____.三、解答題(共7小題,滿分69分)18.(10分)為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調(diào)查他們每天自主學習的時間.根據(jù)調(diào)查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)統(tǒng)計圖中的信息回答下列問題:(1)本次調(diào)查的學生人數(shù)是人;(2)圖2中α是度,并將圖1條形統(tǒng)計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經(jīng)驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.19.(5分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關系,并證明.20.(8分)如圖1,拋物線l1:y=﹣x2+bx+3交x軸于點A、B,(點A在點B的左側),交y軸于點C,其對稱軸為x=1,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(5,0),交y軸于點D(0,﹣5).(1)求拋物線l2的函數(shù)表達式;(2)P為直線x=1上一動點,連接PA、PC,當PA=PC時,求點P的坐標;(3)M為拋物線l2上一動點,過點M作直線MN∥y軸(如圖2所示),交拋物線l1于點N,求點M自點A運動至點E的過程中,線段MN長度的最大值.21.(10分)先化簡,再求值:(﹣1)÷,其中x=1.22.(10分)如圖,△ABC內(nèi)接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當AB=8,CE=2時,求⊙O直徑的長.23.(12分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區(qū)舉辦了一次冬奧知識網(wǎng)上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調(diào)查,過程如下,請補充完整.[收集數(shù)據(jù)]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績?nèi)缦?甲:乙:[整理、描述數(shù)據(jù)]按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):學校人數(shù)成績甲乙(說明:優(yōu)秀成績?yōu)?,良好成績?yōu)楹细癯煽優(yōu)?)[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:學校平均分中位數(shù)眾數(shù)甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績?yōu)閮?yōu)秀的概率為_;(3)根據(jù)以上數(shù)據(jù)推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)24.(14分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.2、B【解析】試題分析:“960萬”用科學記數(shù)法表示為9.6×106,故選B.考點:科學記數(shù)法—表示較大的數(shù).3、D【解析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結論B正確;C、∵共有30個數(shù),第15、16個數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結論D不正確.故選D.考點:1.條形統(tǒng)計圖;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).4、A【解析】
按照有理數(shù)的運算規(guī)則計算即可.【詳解】原式=-3×5=-15,故選擇A.【點睛】本題考查了有理數(shù)的運算,注意符號不要搞錯.5、C【解析】
根據(jù)“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.【點睛】考查了解不等式組,根據(jù)求不等式的無解,遵循“大大小小解不了”原則得出是解題關鍵.6、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、D【解析】
根據(jù)一次函數(shù)的系數(shù)判斷出函數(shù)圖象所經(jīng)過的象限,由k=2>0,b=1>0可知,一次函數(shù)y=2x+1的圖象過一、二、三象限.另外此題還可以通過直接畫函數(shù)圖象來解答.【詳解】∵k=2>0,b=1>0,∴根據(jù)一次函數(shù)圖象的性質(zhì)即可判斷該函數(shù)圖象經(jīng)過一、二、三象限,不經(jīng)過第四象限.故選D.【點睛】本題考查一次函數(shù)圖象與系數(shù)的關系,解決此類題目的關鍵是確定k、b的正負.8、C【解析】
由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.【點睛】本題考查了向量的方向,是基礎題,較簡單.9、C【解析】
先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關鍵是掌握幾個特殊角的三角函數(shù)值以及相反數(shù)的概念.10、B【解析】
由菱形的性質(zhì)得出AD=AB=6,∠ADC=120°,由三角函數(shù)求出菱形的高DF,圖中陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積,根據(jù)面積公式計算即可.【詳解】∵四邊形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD?sin60°=6×=3,
∴陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積=6×3=18-9π.
故選B.【點睛】本題考查了菱形的性質(zhì)、三角函數(shù)、菱形和扇形面積的計算;由三角函數(shù)求出菱形的高是解決問題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.12、5x﹣3y=83x+8y=9【解析】
方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.13、1π+1.【解析】分析:根據(jù)題意求出OC,根據(jù)弧長公式分別求出AB、CD的弧長,根據(jù)扇形周長公式計算.詳解:由題意得,OC=AC=OA=15,的長==20π,的長==10π,∴扇面ABDC的周長=20π+10π+15+15=1π+1(cm),故答案為1π+1.點睛:本題考查的是弧長的計算,掌握弧長公式:是解題的關鍵.14、1【解析】
根據(jù)垂徑定理求得BD,然后根據(jù)勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應用是本題的解題關鍵.15、【解析】
求出自變量x為1時的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點坐標.【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點坐標為,故答案為.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,在y軸上的點的橫坐標為1.16、-1【解析】
先求出8a+6b的值,然后整體代入進行計算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點睛】本題考查了代數(shù)式求值,整體思想的利用是解題的關鍵.17、【解析】
根據(jù)矩形的性質(zhì)得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據(jù)折疊得到BF=AB=5,EF=EA,根據(jù)勾股定理求出CF,由此得到DF的長,再根據(jù)勾股定理即可求出AE.【詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質(zhì)可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【點睛】此題考查矩形的性質(zhì),勾股定理,折疊的性質(zhì),由折疊得到BF的長度是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)40;(2)54,補圖見解析;(3)330;(4).【解析】
(1)根據(jù)由自主學習的時間是1小時的人數(shù)占30%,可求得本次調(diào)查的學生人數(shù);(2),由自主學習的時間是0.5小時的人數(shù)為40×35%=14;(3)求出這40名學生自主學習時間不少于1.5小時的百分比乘以600即可;(4)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與選中小亮A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵自主學習的時間是1小時的有12人,占30%,∴12÷30%=40,故答案為40;(2),故答案為54;自主學習的時間是0.5小時的人數(shù)為40×35%=14;補充圖形如圖:(3)600×=330;故答案為330;(4)畫樹狀圖得:∵共有12種等可能的結果,選中小亮A的有6種可能,∴P(A)=.19、(1)①45°,②;(2)線段AH與AB+AC之間的數(shù)量關系:2AH=AB+AC.證明見解析.【解析】
(1)①先根據(jù)角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質(zhì)得∠B=75°,最后利用三角形內(nèi)角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)可得AG=AH,再由線段的和可得結論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數(shù)量關系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點F,取BF的中點G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【點睛】本題是三角形的綜合題,難度適中,考查了三角形全等的性質(zhì)和判定、等腰三角形的性質(zhì)和判定、勾股定理、三角形的中位線定理等知識,熟練掌握這些性質(zhì)是本題的關鍵,第(2)問構建等腰三角形是關鍵.20、(1)拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)P點坐標為(1,1);(3)在點M自點A運動至點E的過程中,線段MN長度的最大值為12.1.【解析】
(1)由拋物線l1的對稱軸求出b的值,即可得出拋物線l1的解析式,從而得出點A、點B的坐標,由點B、點E、點D的坐標求出拋物線l2的解析式即可;(2)作CH⊥PG交直線PG于點H,設點P的坐標為(1,y),求出點C的坐標,進而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分別將PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)設出點M的坐標,求出兩個拋物線交點的橫坐標分別為﹣1,4,①當﹣1<x≤4時,點M位于點N的下方,表示出MN的長度為關于x的二次函數(shù),在x的范圍內(nèi)求二次函數(shù)的最值;②當4<x≤1時,點M位于點N的上方,同理求出此時MN的最大值,取二者較大值,即可得出MN的最大值.【詳解】(1)∵拋物線l1:y=﹣x2+bx+3對稱軸為x=1,∴x=﹣=1,b=2,∴拋物線l1的函數(shù)表達式為:y=﹣x2+2x+3,當y=0時,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),設拋物線l2的函數(shù)表達式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)作CH⊥PG交直線PG于點H,設P點坐標為(1,y),由(1)可得C點坐標為(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P點坐標為(1,1);(3)由題意可設M(x,x2﹣4x﹣1),∵MN∥y軸,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①當﹣1<x≤4時,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,顯然﹣1<≤4,∴當x=時,MN有最大值12.1;②當4<x≤1時,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,顯然當x>時,MN隨x的增大而增大,∴當x=1時,MN有最大值,MN=2(1﹣)2﹣=12.綜上可知:在點M自點A運動至點E的過程中,線段MN長度的最大值為12.1.【點睛】本題是二次函數(shù)與幾何綜合題,主要考查二次函數(shù)解析式的求解、勾股定理的應用以及動點求線段最值問題.21、-1.【解析】
先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【詳解】解:原式=,=,=,=﹣,當x=1時,原式=﹣=﹣1.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則22、(1)見解析;(2)⊙O直徑的長是4.【解析】
(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;
(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BDC∽△BED,求出BD,即可得出結論.【詳解】證明:(1)連接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直徑,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切線;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直徑,∴AF=CF,∴AB=B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大數(shù)據(jù)理賠分析-洞察與解讀
- 珠寶公司銷售費用管理辦法
- 某珠寶公司庫存飾品清倉方案
- 數(shù)字藝術隱私保護-洞察與解讀
- 機電安裝工程技術質(zhì)量管理策劃書
- 安防監(jiān)控工程施工合同協(xié)議范本
- 新冠疫情消毒防疫服務合同
- 鋼結構人行天橋施工技術方案
- 現(xiàn)澆梁支架盤扣支架計算書
- 醫(yī)療垃圾培訓內(nèi)容
- 2026浙江杭州市西湖區(qū)農(nóng)業(yè)農(nóng)村局面向社會招聘編外人員1名備考題庫含答案詳解
- 2026四川涼山州雷波縣糧油貿(mào)易總公司面向社會招聘6人備考題庫(含答案詳解)
- 2026年及未來5年市場數(shù)據(jù)中國稅務信息化行業(yè)市場全景評估及投資戰(zhàn)略咨詢報告
- 非糧化排查工作方案
- GB/T 9706.266-2025醫(yī)用電氣設備第2-66部分:助聽器及助聽器系統(tǒng)的基本安全和基本性能專用要求
- 2025年生態(tài)旅游度假區(qū)生態(tài)旅游度假村生態(tài)旅游商品開發(fā)項目可行性分析報告
- (一模)株洲市2026屆高三年級教學質(zhì)量統(tǒng)一檢測地理試卷(含答案詳解)
- 2025安徽省中煤三建國際公司機關工作人員內(nèi)部競聘31人筆試歷年參考題庫附帶答案詳解
- 醫(yī)美醫(yī)療糾紛協(xié)議2025年
- 軟筆書法課件教學
- 產(chǎn)品品質(zhì)管理控制模板與實施手冊
評論
0/150
提交評論