版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆浙江省中考數(shù)學最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在中,面積是16,的垂直平分線分別交邊于點,若點為邊的中點,點為線段上一動點,則周長的最小值為()A.6 B.8 C.10 D.122.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應的常數(shù)項.把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.3.“嫦娥一號”衛(wèi)星順利進入繞月工作軌道,行程約有1800000千米,1800000這個數(shù)用科學記數(shù)法可以表示為A. B. C. D.4.﹣0.2的相反數(shù)是()A.0.2 B.±0.2 C.﹣0.2 D.25.在平面直角坐標系中,點(2,3)所在的象限是(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限6.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.7.如圖的立體圖形,從左面看可能是()A. B.C. D.8.把6800000,用科學記數(shù)法表示為()A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×1089.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預祝中考成功”,其中“預”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.10.如圖,甲、乙、丙圖形都是由大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個數(shù).其中主視圖相同的是()A.僅有甲和乙相同 B.僅有甲和丙相同C.僅有乙和丙相同 D.甲、乙、丙都相同二、填空題(本大題共6個小題,每小題3分,共18分)11.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,則AE=_______.12.已知⊙O的半徑為5,由直徑AB的端點B作⊙O的切線,從圓周上一點P引該切線的垂線PM,M為垂足,連接PA,設PA=x,則AP+2PM的函數(shù)表達式為______,此函數(shù)的最大值是____,最小值是______.13.關于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________14.如圖,在△ABC中,AB=AC,BC=8.是△ABC的外接圓,其半徑為5.若點A在優(yōu)弧BC上,則的值為_____________.15.分解因式:.16.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向學校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.三、解答題(共8題,共72分)17.(8分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數(shù)圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數(shù)圖象的伴侶正方形.如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫出答案)18.(8分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結.(1)求證:四邊形為菱形;(2)連結,若平分,,求的長.19.(8分)如圖1,已知拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)兩點.(1)求拋物線的解析式;(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標平面內有點P,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).20.(8分)如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,與函數(shù)的圖象的一個交點為.(1)求,,的值;(2)將線段向右平移得到對應線段,當點落在函數(shù)的圖象上時,求線段掃過的面積.21.(8分)車輛經過潤揚大橋收費站時,4個收費通道A.B、C、D中,可隨機選擇其中的一個通過.一輛車經過此收費站時,選擇A通道通過的概率是;求兩輛車經過此收費站時,選擇不同通道通過的概率.22.(10分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC、AB于點E、F.(1)若∠B=30°,求證:以A、O、D、E為頂點的四邊形是菱形.(2)若AC=6,AB=10,連結AD,求⊙O的半徑和AD的長.23.(12分)一只不透明的袋子中裝有4個質地、大小均相同的小球,這些小球分別標有3,4,5,x,甲,乙兩人每次同時從袋中各隨機取出1個小球,并計算2個小球上的數(shù)字之和.記錄后將小球放回袋中攪勻,進行重復試驗,試驗數(shù)據如下表:摸球總次數(shù)1020306090120180240330450“和為8”出現(xiàn)的頻數(shù)210132430375882110150“和為8”出現(xiàn)的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗繼續(xù)進行下去,根據上表提供的數(shù)據,出現(xiàn)和為8的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)和為8的概率是________;如果摸出的2個小球上數(shù)字之和為9的概率是,那么x的值可以為7嗎?為什么?24.隨著“互聯(lián)網+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:時間(分鐘)里程數(shù)(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
連接AD,AM,由于△ABC是等腰三角形,點D是BC的中點,故,在根據三角形的面積公式求出AD的長,再根據EF是線段AC的垂直平分線可知,點A關于直線EF的對稱點為點C,,推出,故AD的長為BM+MD的最小值,由此即可得出結論.【詳解】連接AD,MA∵△ABC是等腰三角形,點D是BC邊上的中點∴∴解得∵EF是線段AC的垂直平分線∴點A關于直線EF的對稱點為點C∴∵∴AD的長為BM+MD的最小值∴△CDM的周長最短故選:C.【點睛】本題考查了三角形線段長度的問題,掌握等腰三角形的性質、三角形的面積公式、垂直平分線的性質是解題的關鍵.2、A【解析】
根據圖形,結合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列出方程組.3、C【解析】分析:一個絕對值大于10的數(shù)可以表示為的形式,其中為整數(shù).確定的值時,整數(shù)位數(shù)減去1即可.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:1800000這個數(shù)用科學記數(shù)法可以表示為故選C.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.4、A【解析】
根據相反數(shù)的定義進行解答即可.【詳解】負數(shù)的相反數(shù)是它的絕對值,所以﹣0.2的相反數(shù)是0.2.故選A.【點睛】本題主要考查相反數(shù)的定義,熟練掌握這個知識點是解題關鍵.5、A【解析】
根據點所在象限的點的橫縱坐標的符號特點,就可得出已知點所在的象限.【詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【點睛】考核知識點:點的坐標與象限的關系.6、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據菱形的性質得出AC=AB,再根據勾股定理得出AE的長度即可.7、A【解析】
根據三視圖的性質即可解題.【詳解】解:根據三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.8、B【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:把6800000用科學記數(shù)法表示為6.8×1.故選B.點睛:本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、C【解析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點對各選項分析判斷后利用排除法求解:A、“預”的對面是“考”,“祝”的對面是“成”,“中”的對面是“功”,故本選項錯誤;B、“預”的對面是“功”,“?!钡膶γ媸恰翱肌保爸小钡膶γ媸恰俺伞?,故本選項錯誤;C、“預”的對面是“中”,“?!钡膶γ媸恰翱肌?,“成”的對面是“功”,故本選項正確;D、“預”的對面是“中”,“?!钡膶γ媸恰俺伞?,“考”的對面是“功”,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.10、B【解析】試題分析:根據分析可知,甲的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;乙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,1;丙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;則主視圖相同的是甲和丙.考點:由三視圖判斷幾何體;簡單組合體的三視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、5【解析】∵BD⊥AC于D,∴∠ADB=90°,∴sinA=.設BD=,則AB=AC=,在Rt△ABD中,由勾股定理可得:AD=,∴CD=AC-AD=,∵在Rt△BDC中,BD2+CD2=BC2,∴,解得(不合題意,舍去),∴AB=10,AD=8,BD=6,∵BE平分∠ABD,∴,∴AE=5.點睛:本題有兩個解題關鍵點:(1)利用sinA=,設BD=,結合其它條件表達出CD,把條件集中到△BDC中,結合BC=由勾股定理解出,從而可求出相關線段的長;(2)要熟悉“三角形角平分線分線段成比例定理:三角形的內角平分線分對邊所得線段與這個角的兩邊對應成比例”.12、x2+x+20(0<x<10)不存在.【解析】
先連接BP,AB是直徑,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求從而有(0<x<10),再根據二次函數(shù)的性質,可求函數(shù)的最大值.【詳解】如圖所示,連接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,沒有最小值,∴y最大值=故答案為(0<x<10),,不存在.【點睛】考查相似三角形的判定與性質,二次函數(shù)的最值等,綜合性比較強,需要熟練掌握.13、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.14、2【解析】【分析】作高線AD,由等腰三角形的性質可知D為BC的中點,即AD為BC的垂直平分線,根據垂徑定理,AD過圓心O,由BC的長可得出BD的長,根據勾股定理求出半徑,繼而可得AD的長,在直角三角形ABD中根據正切的定義求解即可.試題解析:如圖,作AD⊥BC,垂足為D,連接OB,∵AB=AC,∴BD=CD=BC=×8=4,∴AD垂直平分BC,∴AD過圓心O,在Rt△OBD中,OD==3,∴AD=AO+OD=8,在Rt△ABD中,tan∠ABC==2,故答案為2.【點睛】本題考查了垂徑定理、等腰三角形的性質、正切的定義等知識,綜合性較強,正確添加輔助線構造直角三角形進行解題是關鍵.15、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.考點:提公因式法和應用公式法因式分解.16、①②③【解析】
由公交車在7至12分鐘時間內行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向學校的速度.【詳解】解:公交車7至12分鐘時間內行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數(shù)的應用.三、解答題(共8題,共72分)17、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應的拋物線分別為;;,偶數(shù).【解析】
(1)設正方形ABCD的邊長為a,當點A在x軸負半軸、點B在y軸正半軸上時,可知3a=,求出a,
(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本問的拋物線解析式不止一個,求出其中一個.【詳解】解:(1)∵正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.當點A在x軸正半軸、點B在y軸負半軸上時,∴AO=1,BO=1,∴正方形ABCD的邊長為,當點A在x軸負半軸、點B在y軸正半軸上時,設正方形的邊長為a,得3a=,∴,所以伴侶正方形的邊長為或;(2)作DE、CF分別垂直于x、y軸,知△ADE≌△BAO≌△CBF,此時,m<2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C點坐標為(2﹣m,2),∴2m=2(2﹣m)解得m=1,反比例函數(shù)的解析式為y=,(3)根據題意畫出圖形,如圖所示:過C作CF⊥x軸,垂足為F,過D作DE⊥CF,垂足為E,∴△CED≌△DGB≌△AOB≌△AFC,∵C(3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,則D坐標為(﹣1,3);設過D與C的拋物線的解析式為:y=ax2+b,把D和C的坐標代入得:,解得,∴滿足題意的拋物線的解析式為y=x2+;同理可得D的坐標可以為:(7,﹣3);(﹣4,7);(4,1),;對應的拋物線分別為;;,所求的任何拋物線的伴侶正方形個數(shù)為偶數(shù).【點睛】本題考查了二次函數(shù)的綜合題.靈活運用相關知識是解題關鍵.18、(1)證明見解析;(2)AC=;【解析】
(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;
(2)只要證明△ACD是直角三角形,∠ADC=60°,AD=2即可解決問題;【詳解】(1)證明:∵AD=2BC,E為AD的中點,∴DE=BC,∵AD∥BC,∴四邊形BCDE是平行四邊形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四邊形BCDE是菱形.(2)連接AC,如圖所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,AC=.【點睛】考查菱形的判定和性質、直角三角形斜邊中線的性質、銳角三角函數(shù)等知識,解題的關鍵是熟練掌握菱形的判定方法.19、(1)拋物線的解析式是y=x2﹣3x;(2)D點的坐標為(4,﹣4);(3)點P的坐標是()或().【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)解析式進而得出答案即可;
(2)首先求出直線OB的解析式為y=x,進而將二次函數(shù)以一次函數(shù)聯(lián)立求出交點即可;
(3)首先求出直線A′B的解析式,進而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進而求出點P1的坐標,再利用翻折變換的性質得出另一點的坐標.試題解析:(1)∵拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)∴將A與B兩點坐標代入得:,解得:,∴拋物線的解析式是y=x2﹣3x.(2)設直線OB的解析式為y=k1x,由點B(8,8),得:8=8k1,解得:k1=1∴直線OB的解析式為y=x,∴直線OB向下平移m個單位長度后的解析式為:y=x﹣m,∴x﹣m=x2﹣3x,∵拋物線與直線只有一個公共點,∴△=16﹣2m=0,解得:m=8,此時x1=x2=4,y=x2﹣3x=﹣4,∴D點的坐標為(4,﹣4)(3)∵直線OB的解析式為y=x,且A(6,0),∴點A關于直線OB的對稱點A′的坐標是(0,6),根據軸對稱性質和三線合一性質得出∠A′BO=∠ABO,設直線A′B的解析式為y=k2x+6,過點(8,8),∴8k2+6=8,解得:k2=,∴直線A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即點N在直線A′B上,∴設點N(n,),又點N在拋物線y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=8(不合題意,舍去)∴N點的坐標為(﹣,).如圖1,將△NOB沿x軸翻折,得到△N1OB1,則N1(﹣,-),B1(8,﹣8),∴O、D、B1都在直線y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴點P1的坐標為().將△OP1D沿直線y=﹣x翻折,可得另一個滿足條件的點P2(),綜上所述,點P的坐標是()或().【點睛】運用了翻折變換的性質以及待定系數(shù)法求一次函數(shù)和二次函數(shù)解析式以及相似三角形的判定與性質等知識,利用翻折變換的性質得出對應點關系是解題關鍵.20、(1)m=4,n=1,k=3.(2)3.【解析】
(1)把點,分別代入直線中即可求出m=4,再把代入直線即可求出n=1.把代入函數(shù)求出k即可;(2)由(1)可求出點B的坐標為(0,4),點B‘是由點B向右平移得到,故點B’的縱坐標為4,把它代入反比例函數(shù)解析式即可求出它的橫坐標,根據平移的知識可知四邊形AA’B’B是平行四邊形,再根據平行四邊形的面積計算公式計算即可.【詳解】解:(1)把點,分別代入直線中得:-4+m=0,m=4,∴直線解析式為.把代入得:n=-3+4=1.∴點C的坐標為(3,1)把(3,1)代入函數(shù)得:解得:k=3.∴m=4,n=1,k=3.(2)如圖,設點B的坐標為(0,y)則y=-0+4=4∴點B的坐標是(0,4)當y=4時,解得,∴點B’(,4)∵A’,B’是由A,B向右平移得到,∴四邊形AA’B’B是平行四邊形,故四邊形AA’B’B的面積=4=3.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題及函數(shù)的平移,利用數(shù)形結合思想作出圖形是解題的關鍵.21、(1);(2).【解析】試題分析:(1)根據概率公式即可得到結論;(2)畫出樹狀圖即可得到結論.試題解析:(1)選擇A通道通過的概率=,故答案為;(2)設兩輛車為甲,乙,如圖,兩輛車經過此收費站時,會有16種可能的結果,其中選擇不同通道通過的有12種結果,∴選擇不同通道通過的概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 室內裝飾設計師9S考核試卷含答案
- 玻璃退火工復測強化考核試卷含答案
- 煤層氣預處理值班員安全實操評優(yōu)考核試卷含答案
- 農藝工操作水平測試考核試卷含答案
- 一次雷達機務員安全檢查測試考核試卷含答案
- 工業(yè)爐燃料系統(tǒng)裝配工安全理論強化考核試卷含答案
- 燃氣輪機運行值班員安全實操競賽考核試卷含答案
- 2025年東南大學輔導員考試筆試題庫附答案
- 2024年涉縣輔警招聘考試真題匯編附答案
- 2024年洛陽市稅務系統(tǒng)遴選考試真題匯編附答案
- 十八項核心制度(終版)
- 存單質押合同2026年版本
- 實驗室生物安全培訓內容課件
- 2025-2026學年浙教版七年級科學上冊期末模擬試卷
- 北京市懷柔區(qū)2026年國有企業(yè)管培生公開招聘21人備考題庫及答案詳解(易錯題)
- 2025廣東中山城市科創(chuàng)園投資發(fā)展有限公司招聘7人筆試參考題庫附帶答案詳解(3卷)
- 火力發(fā)電廠機組A級檢修監(jiān)理大綱
- 井噴失控事故案例教育-井筒工程處
- 地源熱泵施工方案
- GB/T 16947-2009螺旋彈簧疲勞試驗規(guī)范
- 硒功能與作用-課件
評論
0/150
提交評論