湖北省八市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第1頁
湖北省八市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第2頁
湖北省八市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第3頁
湖北省八市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第4頁
湖北省八市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省八市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量滿足,.O為坐標(biāo)原點(diǎn),.曲線,區(qū)域.若是兩段分離的曲線,則()A. B. C. D.2.我國(guó)古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺六寸意思是:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長(zhǎng)度差為分;且“冬至”時(shí)日影長(zhǎng)度最大,為1350分;“夏至”時(shí)日影長(zhǎng)度最小,為160分則“立春”時(shí)日影長(zhǎng)度為A.分 B.分 C.分 D.分3.在平面直角坐標(biāo)系中,已知四邊形是平行四邊形,,,則()A. B. C. D.4.已知函數(shù),則下列說法正確的是()A.圖像的對(duì)稱中心是B.在定義域內(nèi)是增函數(shù)C.是奇函數(shù)D.圖像的對(duì)稱軸是5.已知奇函數(shù)滿足,則的取值不可能是()A.2 B.4 C.6 D.106.若直線y=﹣x+1的傾斜角為,則A. B.1 C. D.7.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊過點(diǎn),則()A. B. C. D.8.點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為()A. B. C. D.9.以橢圓的兩個(gè)焦點(diǎn)為直徑的端點(diǎn)的圓與橢圓交于四個(gè)不同的點(diǎn),順次連接這四個(gè)點(diǎn)和兩個(gè)焦點(diǎn)恰好組成一個(gè)正六邊形,那么這個(gè)橢圓的離心率為()A. B. C. D.10.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.如圖是一個(gè)算法的流程圖,則輸出的的值是________.12.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則的值為______.13.已知向量,,則的最大值為_______.14.已知向量,,若與的夾角是銳角,則實(shí)數(shù)的取值范圍為______.15.已知扇形的圓心角,扇形的面積為,則該扇形的弧長(zhǎng)的值是______.16.若數(shù)列滿足,且對(duì)于任意的,都有,則___;數(shù)列前10項(xiàng)的和____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的頂點(diǎn)與原點(diǎn)重合,其始邊與軸正半軸重合,終邊與單位圓交于點(diǎn),若,且.(1)求的值;(2)求的值.18.在中,分別是角的對(duì)邊.(1)求角的值;(2)若,且為銳角三角形,求的范圍.19.某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.組號(hào)分組頻數(shù)頻率第1組5第2組①第3組30②第4組20第5組10(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.20.在△中,若.(Ⅰ)求角的大??;(Ⅱ)若,,求△的面積.21.已知向量,,.(1)若,求的值;(2)若,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

由圓的定義及平面向量數(shù)量積的性質(zhì)及其運(yùn)算可得:點(diǎn)P在以O(shè)為圓心,r為半徑的圓上運(yùn)動(dòng)且點(diǎn)P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運(yùn)動(dòng),由圖可得解.【詳解】建立如圖所示的平面直角坐標(biāo)系,則,,由,則,即點(diǎn)P在以O(shè)為圓心,r為半徑的圓上運(yùn)動(dòng),又,則點(diǎn)P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運(yùn)動(dòng),由圖可知:當(dāng)C∩Ω是兩段分離的曲線時(shí),r的取值范圍為:3<r<5,故選:A.【點(diǎn)睛】本題考查平面向量數(shù)量積的性質(zhì)及其運(yùn)算,利用數(shù)形結(jié)合思想,將向量問題轉(zhuǎn)化為圓與圓的位置關(guān)系問題,考查轉(zhuǎn)化與化歸思想,屬于中等題.2、B【解析】

首先“冬至”時(shí)日影長(zhǎng)度最大,為1350分,“夏至”時(shí)日影長(zhǎng)度最小,為160分,即可求出,進(jìn)而求出立春”時(shí)日影長(zhǎng)度為.【詳解】解:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長(zhǎng)度差為分,且“冬至”時(shí)日影長(zhǎng)度最大,為1350分;“夏至”時(shí)日影長(zhǎng)度最小,為160分.,解得,“立春”時(shí)日影長(zhǎng)度為:分.故選B.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,利用等差數(shù)列的性質(zhì)直接求解.3、D【解析】因?yàn)樗倪呅问瞧叫兴倪呅危?,所以,故選D.考點(diǎn):1、平面向量的加法運(yùn)算;2、平面向量數(shù)量積的坐標(biāo)運(yùn)算.4、A【解析】

根據(jù)正切函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】.,由得,,的對(duì)稱中心為,,故正確;.在定義域內(nèi)不是增函數(shù),故錯(cuò)誤;.為非奇非偶函數(shù),故錯(cuò)誤;.的圖象不是軸對(duì)稱圖形,故錯(cuò)誤.故選.【點(diǎn)睛】本題考查了正切函數(shù)的圖象與性質(zhì),考查了整體思想,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬基礎(chǔ)題.5、B【解析】

由三角函數(shù)的奇偶性和對(duì)稱性可求得參數(shù)的值.【詳解】由是奇函數(shù)得又因?yàn)榈藐P(guān)于對(duì)稱,所以,解得所以當(dāng)時(shí),得A答案;當(dāng)時(shí),得C答案;當(dāng)時(shí),得D答案;故選B.【點(diǎn)睛】本題考查三角函數(shù)的奇偶性和對(duì)稱性,屬于基礎(chǔ)題.6、D【解析】

由題意利用直線的方程先求出它的斜率,可得它的傾斜角α,再利用特殊角的余弦值求得cosα.【詳解】∵直線y=﹣x+1的斜率為﹣1,故它的傾斜角為α=135°,則cosα=cos135°=﹣cos45°,故選:D.【點(diǎn)睛】本題主要考查直線的斜率和傾斜角,特殊角的余弦值,屬于基礎(chǔ)題.7、C【解析】

利用三角函數(shù)定義即可求得:,,再利用余弦的二倍角公式得解.【詳解】因?yàn)榻堑慕K邊過點(diǎn),所以點(diǎn)到原點(diǎn)的距離所以,所以故選C【點(diǎn)睛】本題主要考查了三角函數(shù)定義及余弦的二倍角公式,考查計(jì)算能力,屬于較易題.8、D【解析】令,設(shè)對(duì)稱點(diǎn)的坐標(biāo)為,可得的中點(diǎn)在直線上,故可得①,又可得的斜率,由垂直關(guān)系可得②,聯(lián)立①②解得,即對(duì)稱點(diǎn)的坐標(biāo)為,故選D.點(diǎn)睛:本題考查對(duì)稱問題,得出中點(diǎn)在直線且連線與已知直線垂直是解決問題的關(guān)鍵,屬中檔題;點(diǎn)關(guān)于直線成軸對(duì)稱問題,由軸對(duì)稱定義知,對(duì)稱軸即為兩對(duì)稱點(diǎn)連線的“垂直平分線”,利用“垂直”即斜率關(guān)系,“平分”即中點(diǎn)在直線上這兩個(gè)條件建立方程組,就可求出對(duì)稱點(diǎn)的坐標(biāo).9、D【解析】

四個(gè)交點(diǎn)中的任何一個(gè)到焦點(diǎn)的距離和都是,然后分析正六邊形中的長(zhǎng)度和焦距的關(guān)系,從而建立等式求解.【詳解】設(shè)橢圓的焦點(diǎn)是,圓與橢圓的四個(gè)交點(diǎn)是,設(shè),,,,.故選D.【點(diǎn)睛】本題考查了橢圓的定義和橢圓的性質(zhì),屬于基礎(chǔ)題型10、C【解析】

由基本不等式得出,將三個(gè)不等式相加得出,由等號(hào)成立的條件可判斷出的形狀.【詳解】為三邊,,由基本不等式可得,將上述三個(gè)不等式相加得,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,是等邊三角形,故選C.【點(diǎn)睛】本題考查三角形形狀的判斷,考查基本不等式的應(yīng)用,利用基本不等式要注意“一正、二定、三相等”條件的應(yīng)用,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由程序框圖,得運(yùn)行過程如下:;,結(jié)束循環(huán),即輸出的的值是7.12、-6【解析】

由題意可得,求解即可.【詳解】因?yàn)榈炔顢?shù)列的前項(xiàng)和為,,所以由等差數(shù)列的通項(xiàng)公式與求和公式可得解得.故答案為-6.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.13、.【解析】

計(jì)算出,利用輔助角公式進(jìn)行化簡(jiǎn),并求出的最大值,可得出的最大值.【詳解】,,,所以,,當(dāng)且僅當(dāng),即當(dāng),等號(hào)成立,因此,的最大值為,故答案為.【點(diǎn)睛】本題考查平面向量模的最值的計(jì)算,涉及平面向量數(shù)量積的坐標(biāo)運(yùn)算以及三角恒等變換思想的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.14、【解析】

先求出與的坐標(biāo),再根據(jù)與夾角是銳角,則它們的數(shù)量積為正值,且它們不共線,求出實(shí)數(shù)的取值范圍,.【詳解】向量,,,,若與的夾角是銳角,則與不共線,且它們乘積為正值,即,且,求得,且.【點(diǎn)睛】本題主要考查利用向量的數(shù)量積解決向量夾角有關(guān)的問題,以及數(shù)量積的坐標(biāo)表示,向量平行的條件等.條件的等價(jià)轉(zhuǎn)化是解題的關(guān)鍵.15、【解析】

先結(jié)合求出,再由求解即可【詳解】由,則故答案為:【點(diǎn)睛】本題考查扇形的弧長(zhǎng)和面積公式的使用,屬于基礎(chǔ)題16、,【解析】試題分析:由得由得,所以數(shù)列為等比數(shù)列,因此考點(diǎn):等比數(shù)列通項(xiàng)與和項(xiàng)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)平方處理求出,根據(jù)角的范圍可得,即可得解;(2)變形處理,結(jié)合(1)已計(jì)算的結(jié)果即可求解.【詳解】(1)由題:角的頂點(diǎn)與原點(diǎn)重合,其始邊與軸正半軸重合,終邊與單位圓交于點(diǎn),若,,即,兩邊平方可得:,,所以;(2)【點(diǎn)睛】此題考查同角三角函數(shù)的關(guān)系,根據(jù)平方關(guān)系處理同角正余弦的和差積三者關(guān)系,利用平方關(guān)系合理變形求值.18、(1);(2)【解析】

(1)由題結(jié)合余弦定理得角的值;(2)由正弦定理可知,,得,利用三角恒等變換得A的函數(shù)即可求范圍【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即,∴,又∵為銳角三角形,∴,則即,所以,即,綜上的取值范圍為.【點(diǎn)睛】本題考查正余弦定理解三角形,考查三角恒等變換,注意銳角三角形的應(yīng)用,準(zhǔn)確計(jì)算是關(guān)鍵,是中檔題19、(1)人,,直方圖見解析;(2)人、人、人;(3).【解析】

(1)由頻率分布直方圖能求出第組的頻數(shù),第組的頻率,從而完成頻率分布直方圖.(2)根據(jù)第組的頻數(shù)計(jì)算頻率,利用各層的比例,能求出第組分別抽取進(jìn)入第二輪面試的人數(shù).(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,利用列舉法能出所有基本事件及滿足條件的基本事件的個(gè)數(shù),利用古典概型求得概率.【詳解】(1)①由題可知,第2組的頻數(shù)為人,②第組的頻率為,頻率分布直方圖如圖所示,

(2)因?yàn)榈诮M共有名學(xué)生,所以利用分層抽樣在名學(xué)生中抽取名學(xué)生進(jìn)入第二輪面試,每組抽取的人數(shù)分別為:第組:人,第組:人,第組:人,所以第組分別抽取人、人、人進(jìn)入第二輪面試.(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,則從這六位同學(xué)中抽取兩位同學(xué)有種選法,分別為:,,,,,,,,,,,,,,,其中第組的位同學(xué)中至少有一位同學(xué)入選的有種,分別為:,,,∴第組至少有一名學(xué)生被考官面試的概率為.【點(diǎn)睛】本題考查頻率分直方圖、分層抽樣的應(yīng)用,考查概率的求法,考查數(shù)據(jù)處理能力、運(yùn)算求解能力,是基礎(chǔ)題.20、(Ⅰ)(Ⅱ)【解析】

(I)利用正弦定理化簡(jiǎn)已知條件,由此求得的大小.(II)利用余弦定理求得的值,再根據(jù)三角形面積公式求得三角形面積.【詳解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論