重慶市南川中學2021-2022學年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
重慶市南川中學2021-2022學年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
重慶市南川中學2021-2022學年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
重慶市南川中學2021-2022學年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
重慶市南川中學2021-2022學年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市南川中學2021-2022學年畢業(yè)升學考試模擬卷數(shù)學卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.2.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.3.下列運算正確的是()A.a(chǎn)2?a4=a8 B.2a2+a2=3a4 C.a(chǎn)6÷a2=a3 D.(ab2)3=a3b64.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.5.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.6.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶57.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠18.如圖,已知拋物線和直線.我們約定:當x任取一值時,x對應的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當x>2時,M=y2;②當x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x="1".其中正確的有A.1個 B.2個 C.3個 D.4個9.若一組數(shù)據(jù)2,3,4,5,x的平均數(shù)與中位數(shù)相等,則實數(shù)x的值不可能是()A.6 B.3.5 C.2.5 D.110.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°11.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,a,b,c的取值范圍()A.a(chǎn)<0,b<0,c<0B.a(chǎn)<0,b>0,c<0C.a(chǎn)>0,b>0,c<0D.a(chǎn)>0,b<0,c<012.化簡的結果為()A.﹣1 B.1 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有一枚質地均勻的骰子,六個面分別表有1到6的點數(shù),任意將它拋擲兩次,并將兩次朝上面的點數(shù)相加,則其和小于6的概率是______.14.化簡:x2-4x+4x15.化簡的結果等于__.16.已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如表所示:x…﹣5﹣4﹣3﹣2﹣1…y…﹣8﹣3010…當y<﹣3時,x的取值范圍是_____.17.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.18.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.20.(6分)定義:任意兩個數(shù)a,b,按規(guī)則c=b2+ab﹣a+7擴充得到一個新數(shù)c,稱所得的新數(shù)c為“如意數(shù)”.若a=2,b=﹣1,直接寫出a,b的“如意數(shù)”c;如果a=3+m,b=m﹣2,試說明“如意數(shù)”c為非負數(shù).21.(6分)先化簡再求值:,其中,.22.(8分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線l經(jīng)過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉90°得到線段MD,連接CD,BD.設點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標與直線l的表達式;(2)①直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.23.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.24.(10分)如圖,在圖中求作⊙P,使⊙P滿足以線段MN為弦且圓心P到∠AOB兩邊的距離相等.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆加黑)25.(10分)(1)計算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.26.(12分)如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長.27.(12分)如圖,正方形ABCD中,BD為對角線.(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【詳解】A.當時,能判斷;B.

當時,能判斷;C.

當時,不能判斷;D.

當時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應線段是解決此題的關鍵.2、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.3、D【解析】根據(jù)同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、a2?a4=a6,故此選項錯誤;B、2a2+a2=3a2,故此選項錯誤;C、a6÷a2=a4,故此選項錯誤;D、(ab2)3=a3b6,故此選項正確..故選D.考點:同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方.4、B【解析】

根據(jù)DE∥BC得到△ADE∽△ABC,根據(jù)相似三角形的性質解答.【詳解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,

∴,

故選:B.【點睛】本題考查了相似三角形的判定和性質,掌握相似三角形的對應邊的比等于相似比是解題的關鍵.5、B【解析】

找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.6、C【解析】

作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據(jù)角平分線的性質得到OD=OE=OF,根據(jù)三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,

∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,

∴OD=OE=OF,

∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,

故選C.【點睛】考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.7、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.8、B【解析】試題分析:∵當y1=y2時,即時,解得:x=0或x=2,∴由函數(shù)圖象可以得出當x>2時,y2>y1;當0<x<2時,y1>y2;當x<0時,y2>y1.∴①錯誤.∵當x<0時,-直線的值都隨x的增大而增大,∴當x<0時,x值越大,M值越大.∴②正確.∵拋物線的最大值為4,∴M大于4的x值不存在.∴③正確;∵當0<x<2時,y1>y2,∴當M=2時,2x=2,x=1;∵當x>2時,y2>y1,∴當M=2時,,解得(舍去).∴使得M=2的x值是1或.∴④錯誤.綜上所述,正確的有②③2個.故選B.9、C【解析】

因為中位數(shù)的值與大小排列順序有關,而此題中x的大小位置未定,故應該分類討論x所處的所有位置情況:從小到大(或從大到?。┡帕性谥虚g;結尾;開始的位置.【詳解】(1)將這組數(shù)據(jù)從小到大的順序排列為2,3,4,5,x,

處于中間位置的數(shù)是4,

∴中位數(shù)是4,

平均數(shù)為(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列順序;

(2)將這組數(shù)據(jù)從小到大的順序排列后2,3,4,x,5,

中位數(shù)是4,

此時平均數(shù)是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列順序;

(3)將這組數(shù)據(jù)從小到大的順序排列后2,3,x,4,5,

中位數(shù)是x,

平均數(shù)(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列順序;

(4)將這組數(shù)據(jù)從小到大的順序排列后2,x,3,4,5,

中位數(shù)是3,

平均數(shù)(2+3+4+5+x)÷5=3,

解得x=1,不符合排列順序;

(5)將這組數(shù)據(jù)從小到大的順序排列后x,2,3,4,5,

中位數(shù)是3,

平均數(shù)(2+3+4+5+x)÷5=3,

解得x=1,符合排列順序;

∴x的值為6、3.5或1.

故選C.【點睛】考查了確定一組數(shù)據(jù)的中位數(shù),涉及到分類討論思想,較難,要明確中位數(shù)的值與大小排列順序有關,一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).10、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算11、D【解析】試題分析:根據(jù)二次函數(shù)的圖象依次分析各項即可。由拋物線開口向上,可得,再由對稱軸是,可得,由圖象與y軸的交點再x軸下方,可得,故選D.考點:本題考查的是二次函數(shù)的性質點評:解答本題的關鍵是熟練掌握二次函數(shù)的性質:的正負決定拋物線開口方向,對稱軸是,C的正負決定與Y軸的交點位置。12、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

列舉出所有情況,看兩個骰子向上的一面的點數(shù)和小于6的情況占總情況的多少即可.【詳解】解:列表得:

兩個骰子向上的一面的點數(shù)和小于6的有10種,

則其和小于6的概率是,

故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件樹狀圖法適用于兩步或兩步以上完成的事件解題時還要注意是放回實驗還是不放回實驗用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.14、﹣x-2x【解析】

直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.15、.【解析】

先通分變?yōu)橥帜阜质?,然后根?jù)分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關鍵.16、x<﹣4或x>1【解析】

觀察表格求出拋物線的對稱軸,確定開口方向,利用二次函數(shù)的對稱性判斷出x=1時,y=-3,然后寫出y<-3時,x的取值范圍即可.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=-2,拋物線的開口向下,且x=1時,y=-3,所以,y<-3時,x的取值范圍為x<-4或x>1.故答案為x<-4或x>1.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,觀察圖表得到y(tǒng)=-3時的另一個x的值是解題的關鍵.17、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據(jù)相似三角形的性質就可以求出結論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運用,相似三角形的判定及性質的運用,解答時求出△AED∽△ACB是解答本題的關鍵.18、2【解析】

根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明過程見解析;(2)【解析】

(1)根據(jù)CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據(jù)Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據(jù)△ADF和△ACB相似得出相似比,從而得出BC的長度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點:(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定20、(1)4;(2)詳見解析.【解析】

(1)本題是一道自定義運算題型,根據(jù)題中給的如意數(shù)的概念,代入即可得出結果(2)根據(jù)如意數(shù)的定義,求出代數(shù)式,分析取值范圍即可.【詳解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意數(shù)”c為非負數(shù)【點睛】本題考查了因式分解,完全平方式(m﹣1)2的非負性,難度不大.21、8【解析】

原式第一項利用完全平方公式展開,第二項利用單項式乘以多項式法則計算,合并得到最簡結果,將x與y的值代入計算即可求出值.【詳解】原式==,當,時,原式=【點睛】本題考查了整式的混合運算-化簡求值,涉及的知識有:完全平方公式、單項式乘以多項式、去括號法則以及合并同類項法則,熟練掌握公式及法則是解本題的關鍵.22、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】

(1)當y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達式;(2)分當點M在AO上運動時,當點M在OB上運動時,進行討論可求D點坐標,將D點坐標代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當點M在AO上運動時,即0<t<3時,當點M在OB上運動時,即3≤t≤4時,進行討論可求P點坐標.【詳解】(1)當y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側,∴A(﹣3,0),B(1,0),由解析式得C(0,),設直線l的表達式為y=kx+b,將B,C兩點坐標代入得b=mk﹣,故直線l的表達式為y=﹣x+;(2)當點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M在AB上運動,∴當CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最小;(3)當點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法,勾股定理,等腰直角三角形的性質,等邊三角形的性質,三角函數(shù),分類思想的運用,方程思想的運用,綜合性較強,有一定的難度.23、見解析【解析】

根據(jù)角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.24、見解析.【解析】試題分析:先做出∠AOB的角平分線,再求出線段MN的垂直平分線就得到點P.試題解析:考點:尺規(guī)作圖角平分線和線段的垂直平分線、圓的性質.25、(1);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論