版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
河北省唐山市玉田縣高級中學2025屆數(shù)學高一下期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,則在方向上的投影為()A. B. C. D.2.已知,且,則實數(shù)的值為()A.2 B. C.3 D.3.若,,且與夾角為,則()A.3 B. C.2 D.4.圓心坐標為,半徑長為2的圓的標準方程是()A. B.C. D.5.已知等差數(shù)列的前項和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.196.如圖,位于處的海面觀測站獲悉,在其正東方向相距40海里的處有一艘漁船遇險,并在原地等待營救.在處南偏西且相距20海里的處有一救援船,其速度為海里小時,則該船到求助處的時間為()分鐘.A.24 B.36 C.48 D.607.邊長為2的正方形內(nèi)有一封閉曲線圍成的陰影區(qū)域.向正方形中隨機地撒200粒芝麻,大約有80粒落在陰影區(qū)域內(nèi),則此陰影區(qū)域的面積約為()A. B. C. D.8.某程序框圖如圖所示,則該程序運行后輸出的值是()A. B. C. D.9.設變量滿足約束條件,則目標函數(shù)的最小值為()A. B. C. D.210.在中,為線段上的一點,,且,則A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列的公比為,關(guān)于的不等式有下列說法:①當吋,不等式的解集②當吋,不等式的解集為③當>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說法正確的序號是_______.12.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………13.魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱.從外表上看,六根等長的正四棱柱體分成三組,經(jīng)榫卯起來,如圖3,若正四棱柱體的高為,底面正方形的邊長為,現(xiàn)將該魯班鎖放進一個球形容器內(nèi),則該球形容器的表面積的最小值為__________.(容器壁的厚度忽略不計)14.的內(nèi)角的對邊分別為.若,則的面積為__________.15.若數(shù)列的前項和,滿足,則______.16.在中,、、所對的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,在直三棱柱中,,,M、N分別為、的中點.求證:平面;求證:平面.18.已知向量,,.(1)若,求的值;(2)若,,求的值.19.如圖所示,某住宅小區(qū)的平面圖是圓心角為120°的扇形,小區(qū)的兩個出入口設置在點及點處,且小區(qū)里有一條平行于的小路,已知某人從沿走到用了10分鐘,從沿走到用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑的長.20.如圖,三棱柱,底面,且為正三角形,,,為中點.(1)求證:直線平面;(2)求二面角的大?。?1.在中,角的平分線交于點D,是面積的倍.(I)求的值;(II)若,,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
直接利用向量的數(shù)量積和向量的投影的定義,即可求解,得到答案.【詳解】由題意,向量,,則在方向上的投影為:.故選D.【點睛】本題主要考查了平面向量的數(shù)量積的應用,其中解答中熟記向量的數(shù)量積的運算公式,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.2、D【解析】
根據(jù)二角和與差的正弦公式化簡,,再切化弦,即可求解.【詳解】由題意又解得故選:【點睛】本題考查兩角和與差的正弦公式,屬于基礎題.3、B【解析】
由題意利用兩個向量數(shù)量積的定義,求得的值,再根據(jù),計算求得結(jié)果.【詳解】由題意若,,且與夾角為,可得,.故選:B.【點睛】本題考查向量數(shù)量積的定義、向量的模的方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意不要錯選成A答案.4、C【解析】
根據(jù)圓的標準方程的形式寫.【詳解】圓心為,半徑為2的圓的標準方程是.故選C.【點睛】本題考查了圓的標準方程,故選C.5、C【解析】
先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結(jié)果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點睛】本題主要考查等差數(shù)列的應用,熟記等差數(shù)列的性質(zhì)與求和公式即可,屬于??碱}型.6、A【解析】
利用余弦定理求出的長度,然后根據(jù)速度、時間、路程之間的關(guān)系求出時間即可.【詳解】由題意可知:,運用余弦定理可知:該船到求助處的時間,故本題選A.【點睛】本題考查了余弦定理的應用,考查了數(shù)學運算能力.7、B【解析】
依題意得,豆子落在陰影區(qū)域內(nèi)的概率等于陰影部分面積與正方形面積之比,即可求出結(jié)果.【詳解】設陰影區(qū)域的面積為,由題意可得,則.故選:B.【點睛】本題考查隨機模擬實驗,根據(jù)幾何概型的意義進行模擬實驗計算陰影部分面積,關(guān)鍵在于掌握幾何概型的計算公式.8、D【解析】
由題意首先確定流程圖的功能,然后結(jié)合三角函數(shù)的性質(zhì)求解所要輸出的結(jié)果即開即可.【詳解】根據(jù)程序框圖知,該算法的目標是計算和式:.又因為,注意到,故:.故選:D.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu).(2)要識別、運行程序框圖,理解框圖所解決的實際問題.(3)按照題目的要求完成解答并驗證.9、B【解析】
根據(jù)不等式組畫出可行域,數(shù)形結(jié)合解決問題.【詳解】不等式組確定的可行域如下圖所示:因為可化簡為與直線平行,且其在軸的截距與成正比關(guān)系,故當且僅當目標函數(shù)經(jīng)過和的交點時,取得最小值,將點的坐標代入目標函數(shù)可得.故選:B.【點睛】本題考查常規(guī)線性規(guī)劃問題,屬基礎題,注意數(shù)形結(jié)合即可.10、A【解析】
根據(jù)相等向量的定義及向量的運算法則:三角形法則求出,利用平面向量基本定理求出x,y的值【詳解】由題意,∵,∴,即,∴,即故選A.【點睛】本題以三角形為載體,考查向量的加法、減法的運算法則;利用運算法則將未知的向量用已知向量表示,是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、③【解析】
利用等比數(shù)列的通項公式,解不等式后可得結(jié)論.【詳解】由題意,不等式變?yōu)?,即,若,則,當或時解為,當或時,解為,時,解為;若,則,當或時解為,當或時,解為,時,不等式無解.對照A、B、C、D,只有C正確.故選C.【點睛】本題考查等比數(shù)列的通項公式,考查解一元二次不等式,難點是解一元二次不等式,注意分類討論,本題中需對二次項系數(shù)分正負,然后以要對兩根分大小,另外還有一個是相應的一元二次方程是否有實數(shù)解分類(本題已經(jīng)有兩解,不需要這個分類).12、128【解析】
觀察數(shù)陣可知:前行一共有個數(shù),且第行的最后一個數(shù)為,且第行有個數(shù),由此可推斷出所在的位置.【詳解】因為前行一共有個數(shù),且第行的最后一個數(shù)為,又因為,所以在第行,且第45行最后數(shù)為,又因為第行有個數(shù),,所以在第列,所以.故答案為:.【點睛】本題考查數(shù)列在數(shù)陣中的應用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應用問題,可從以下點分析問題:觀察每一行數(shù)據(jù)個數(shù)與行號關(guān)系,同時注意每一行開始的數(shù)據(jù)或結(jié)尾數(shù)據(jù),所有行數(shù)據(jù)的總個數(shù),注意等差數(shù)列的求和公式的運用.13、【解析】表面積最小的球形容器可以看成長、寬、高分別為1、2、6的長方體的外接球.設其半徑為R,,所以該球形容器的表面積的最小值為.【點睛】將表面積最小的球形容器,看成其中兩個正四棱柱的外接球,求其半徑,進而求體積.14、【解析】
本題首先應用余弦定理,建立關(guān)于的方程,應用的關(guān)系、三角形面積公式計算求解,本題屬于常見題目,難度不大,注重了基礎知識、基本方法、數(shù)學式子的變形及運算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點睛】本題涉及正數(shù)開平方運算,易錯點往往是余弦定理應用有誤或是開方導致錯誤.解答此類問題,關(guān)鍵是在明確方法的基礎上,準確記憶公式,細心計算.15、【解析】
令,得出,令,由可計算出在時的表達式,然后就是否符合進行檢驗,由此可得出.【詳解】當時,;當時,則.也適合.綜上所述,.故答案為:.【點睛】本題考查利用求,一般利用來計算,但需要對進行檢驗,考查計算能力,屬于基礎題.16、【解析】
利用誘導公式,二倍角公式,余弦定理化簡即可得解.【詳解】.故答案為.【點睛】本題主要考查了誘導公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】
(1)推導出,從而平面,進而,再由,,得是正方形,由此能證明平面.取的中點F,連BF、推導出四邊形BMNF是平行四邊形,從而,由此能證明平面.【詳解】證明:在直三棱柱中,側(cè)面底面ABC,且側(cè)面底面,,即,平面,平面,,,是正方形,,平面取的中點F,連BF、在中,N、F是中點,,,又,,,,故四邊形BMNF是平行四邊形,,而面,平面,平面【點睛】本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎知識,是中檔題.18、(1);(2)或【解析】
(1)根據(jù)向量平行的坐標公式得出,利用二倍角公式以及弦化切即可得出答案;(2)利用向量的模長公式得出,由二倍角公式以及降冪公式,輔助角公式得出,結(jié)合正弦函數(shù)的性質(zhì)得出的值.【詳解】(1)由,得,所以.所以.(2)由,得所以,所以,所以.因為,所以,所以或解得或.【點睛】本題主要考查了由向量平行求參數(shù),模長公式,簡單的三角恒等變換以及正弦函數(shù)的性質(zhì)的應用,屬于中檔題.19、【解析】
連接,由題意,得米,米,,在△中,由余弦定理可得答案.【詳解】設該扇形的半徑為米,連接,如圖所示:由題意,得米,米,,在△中,由余弦定理得,即,解得米.答:該扇形的半徑的長為米.【點睛】本題考查了利用余弦定理解三角形,將問題轉(zhuǎn)化為在三角形中求解是解題關(guān)鍵,屬于基礎題.20、(1)證明見解析;(2).【解析】
(1)連交于,連,則點為中點,為中點,得,即可證明結(jié)論;(1)為正三角形,為中點,可得,再由底面,得底面,得,可證平面,有,為的平面角,解,即可求出結(jié)論.【詳解】(1)連交于,連,三棱柱,側(cè)面為平行四邊形,所以點為中點,為中點,所以,因為平面,平面,所以直線平面;(2)為正三角形,為中點,可得,三棱柱,所以,底面,所以底面,底面,所以,又平面,所以平面,平面,所以,為的平面角,在中,,,所以,所以二面角的大小為.【點睛】本題考查線面平行的證明,用幾何法求二面角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海外物資設備管理培訓
- 氣焊工測試驗證模擬考核試卷含答案
- 冷拉絲工操作評估考核試卷含答案
- 熱縮材料制造工安全培訓知識考核試卷含答案
- 中藥藥劑員誠信強化考核試卷含答案
- 藥品購銷員安全技能競賽考核試卷含答案
- 酒店員工培訓與職業(yè)生涯規(guī)劃制度
- 酒店服務質(zhì)量監(jiān)督評價制度
- 財務費用報銷與審批制度
- 土壤及動植物樣本檢測擴建項目環(huán)境影響報告表
- 2026中考英語時文熱點:跨學科融合閱讀 練習(含解析)
- 《筑牢安全防線 歡度平安寒假》2026年寒假安全教育主題班會課件
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及答案詳解(新)
- 信息技術(shù)應用創(chuàng)新軟件適配測評技術(shù)規(guī)范
- 2026版安全隱患排查治理
- 道路施工安全管理課件
- (2025年)吉林事業(yè)單位考試真題附答案
- 肉瘤的課件教學課件
- 《患者身份識別管理標準》測試題及答案
- VTE患者并發(fā)癥預防與處理
- 車輛救援合同協(xié)議書
評論
0/150
提交評論