版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省宜春九中2024屆高一下數(shù)學(xué)期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),此函數(shù)的圖象如圖所示,則點的坐標是()A. B. C. D.2.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.已知實數(shù)滿足,那么的最小值為(
)A. B. C. D.4.在中,且,則等于()A. B. C. D.5.已知實數(shù),,,則()A. B. C. D.6.在四邊形中,若,且,則四邊形是()A.矩形 B.菱形 C.正方形 D.梯形7.在等差數(shù)列中,,是方程的兩個根,則的前14項和為()A.55 B.60 C.65 D.708.已知,,,則的最小值是()A. B.4 C.9 D.59.已知直線,直線,若,則直線與的距離為()A. B. C. D.10.已知向量,,若,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若不等式對于任意都成立,則實數(shù)的取值范圍是____________.12.已知等比數(shù)列中,若,,則_____.13.已知內(nèi)接于拋物線,其中O為原點,若此內(nèi)接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.14.已知向量為單位向量,向量,且,則向量的夾角為__________.15.某工廠生產(chǎn)三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為,現(xiàn)用分層抽樣方法抽出一個容量為的樣本,樣本中種型號產(chǎn)品有16件,那么此樣本的容量=16.在直角坐標系中,直線與直線都經(jīng)過點,若,則直線的一般方程是_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,,,其頻率分布直方圖如圖所示.(1)若樣本中月均用電量在的居民有戶,求樣本容量;(2)求月均用電量的中位數(shù);(3)在月均用電量為,,,的四組居民中,用分層隨機抽樣法抽取戶居民,則月均用電量在的居民應(yīng)抽取多少戶?18.如圖,已知平面平行于三棱錐的底面,等邊所在的平面與底面垂直,且,設(shè)(1)求證:且;(2)求二面角的余弦值.19.已知為第三象限角,.(1)化簡(2)若,求的值20.在△ABC中,角A,B,C所對的邊分別是a,b,c,a=7,b=8,.(1)求邊AB的長;(2)求△ABC的面積.21.已知四棱臺中,平面ABCD,四邊形ABCD為平行四邊形,,,,,E為DC中點.(1)求證:平面;(2)求證:;(3)求三棱錐的高.(注:棱臺的兩底面相似)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)確定的兩個相鄰零點的值可以求出最小正周期,進而利用正弦型最小正周期公式求出的值,最后把其中的一個零點代入函數(shù)的解析式中,求出的值即可.【詳解】設(shè)函數(shù)的最小正周期為,因此有,當時,,因此的坐標為:.故選:B【點睛】本題考查了通過三角函數(shù)的圖象求參數(shù)問題,屬于基礎(chǔ)題.2、C【解析】
本題首先要明確平面直角坐標系中每一象限所對應(yīng)的角的范圍,然后即可判斷出在哪一象限中.【詳解】第一象限所對應(yīng)的角為;第二象限所對應(yīng)的角為;第三象限所對應(yīng)的角為;第四象限所對應(yīng)的角為;因為,所以位于第三象限,故選C.【點睛】本題考查如何判斷角所在象限,能否明確每一象限所對應(yīng)的角的范圍是解決本題的關(guān)鍵,考查推理能力,是簡單題.3、A【解析】
表示直線上的點到原點的距離,利用點到直線的距離公式求得最小值.【詳解】依題意可知表示直線上的點到原點的距離,故原點到直線的距離為最小值,即最小值為,故選A.【點睛】本小題主要考查點到直線的距離公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.4、A【解析】
在△ABC中,利用正弦定理與兩角和的正弦化簡已知可得,sin(A+C)=sinB,結(jié)合a>b,即可求得答案.【詳解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故選A.【點睛】本題考查兩角和與差的正弦函數(shù)與正弦定理的應(yīng)用,考查了大角對大邊的性質(zhì),屬于中檔題.5、C【解析】
先得出,,,然后利用在上的單調(diào)性即可比較出的大小.【詳解】因為所以,,因為且在上單調(diào)遞增所以故選:C【點睛】利用函數(shù)單調(diào)性比較函數(shù)值大小的時候,應(yīng)將自變量轉(zhuǎn)化到同一個單調(diào)區(qū)間內(nèi).6、A【解析】
根據(jù)向量相等可知四邊形為平行四邊形;由數(shù)量積為零可知,從而得到四邊形為矩形.【詳解】,可知且四邊形為平行四邊形由可知:四邊形為矩形本題正確選項:【點睛】本題考查相等向量、垂直關(guān)系的向量表示,屬于基礎(chǔ)題.7、D【解析】
根據(jù)根與系數(shù)之間的關(guān)系求出a5+a10,利用等差數(shù)列的前n項和公式及性質(zhì)進行求解即可.【詳解】∵,是方程的兩個根,可得,∴.故選D.【點睛】本題主要考查等差數(shù)列的前n項和公式的應(yīng)用,考查了等差數(shù)列的性質(zhì)的運用,根據(jù)根與系數(shù)之間的關(guān)系建立方程關(guān)系是解決本題的關(guān)鍵.8、C【解析】
利用題設(shè)中的等式,把的表達式轉(zhuǎn)化成展開后,利用基本不等式求得的最小值.【詳解】∵,,,∴=,當且僅當,即時等號成立.故選:C.【點睛】本題主要考查了基本不等式求最值,注意一定,二正,三相等的原則,屬于基礎(chǔ)題.9、A【解析】
利用直線平行的性質(zhì)解得,再由兩平行線間的距離求解即可【詳解】∵直線l1:ax+2y﹣1=0,直線l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直線l1:1x-2y+1=0,直線l2:1x-2y+3=0,故與的距離為故選A.【點睛】本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意直線平行的性質(zhì)的靈活運用.10、D【解析】∵,,⊥,∴,解得.∴.∴,又.設(shè)向量與的夾角為,則.又,∴.選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實數(shù)的取值范圍是.故答案為:【點睛】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12、4【解析】
根據(jù)等比數(shù)列的等積求解即可.【詳解】因為,故.又,故.故答案為:4【點睛】本題主要考查了等比數(shù)列等積性的運用,屬于基礎(chǔ)題.13、【解析】
由拋物線的對稱性知A、B關(guān)于x軸對稱,設(shè)出它們的坐標,利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標,問題得以解決.【詳解】∵拋物線關(guān)于x軸對稱,內(nèi)接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關(guān)于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設(shè)A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質(zhì),考查了兩直線垂直與斜率的關(guān)系,是中檔題14、【解析】因為,所以,所以,所以,則.15、1.【解析】
解:A種型號產(chǎn)品所占的比例為2/(2+3+5)=2/10,16÷2/10=1,故樣本容量n=1,16、【解析】
點代入的方程求出k,再由求出直線的斜率,即可寫出直線的點斜式方程.【詳解】將點代入直線得,,解得,又,,于是的方程為,整理得.故答案為:【點睛】本題考查直線的方程,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)200(2)224(3)4戶【解析】
(1)因為,所以月均用電量在的頻率為,即可求得答案;(2)因為,設(shè)中位數(shù)為,,即可求得答案;(3)月均用電量為,,,的頻率分別為,即可求得答案.【詳解】(1),得.月均用電量在的頻率為.設(shè)樣本容量為N,則,.(2),月均用電量的中位數(shù)在內(nèi).設(shè)中位數(shù)為,,解得,即中位數(shù)為.(3)月均用電量為,,,的頻率分別為應(yīng)從月均用電量在的用戶中抽取(戶)【點睛】本題考查了用樣本估計總體的相關(guān)計算,解題關(guān)鍵是掌握分層抽樣的計算方法和樣本容量,中位數(shù)定義,考查了分析能力和計算能力,屬于基礎(chǔ)題.18、(1)證明見解析;(1)【解析】
(1)由平面∥平面,根據(jù)面面平行的性質(zhì)定理,可得,,再由,得到.由平面平面,根據(jù)面面垂直的性質(zhì)定理可得平面,從而有.(2)過作于,根據(jù)題意有平面,過D作于H,連結(jié)AH,由三垂線定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【詳解】(1)證明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)過作于,∵為正三角形,∴D為中點,∵平面∴又∵,∴平面.在等邊三角形中,,過D作于H,連結(jié)AH,由三垂線定理知,∴是二面角的平面角.在中,~,,∴,,∴.【點睛】本題主要考查幾何體中面面平行的性質(zhì)定理和面面垂直的性質(zhì)定理及二角面角問題,還考查了空間想象,抽象概括,推理論證的能力,屬于中檔題.19、(1)見解析;(2).【解析】利用指數(shù)運算、指對互化、對數(shù)運算求解試題分析:(1)(2)由,得.又已知為第三象限角,所以,所以,所以=………………10分考點:本題主要考查了誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系以及三角函數(shù)符號的判定.點評:解決此類問題的關(guān)鍵是掌握誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系以及三角函數(shù)符好的判定方法.誘導(dǎo)公式的記憶應(yīng)結(jié)合圖形記憶較好,難度一般.20、(1)AB的長為1.(2)6.【解析】
(1)利用余弦定理解方程,解方程求得的長.(2)根據(jù)的值,求得的值,由三角形面積公式,求得三角形的面積.【詳解】(1)∵a=7,b=8,.∴由余弦定理b2=a2+c2﹣2accosB,可得:64=49+c2﹣2,可得:c2+2c﹣15=0,∴解得:c=1,或﹣5(舍去),可得:AB的長為1.(2)∵,B∈(0,π),∴sinB,又a=7,c=1,∴S△ABCacsinB6.【點睛】本小題主要考查余弦定理解三角形,考查三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系式,考查運算求解能力,屬于基礎(chǔ)題.21、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)連結(jié),可證四邊形為平行四邊形,故可證平面;(2)連結(jié)BD,在中運用余弦定理可得:,利用勾股定理和線面垂直的性質(zhì),可得平面,因此可證;(3)根據(jù)題意,不難求,再利用即可求三棱錐的高.【詳解】(1)證明:連結(jié),因為為四棱臺,所以,又因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子通訊:5G時代的就業(yè)風(fēng)口
- 2025年云南牟定縣公安局公開招聘警務(wù)輔助人員備考題庫及參考答案詳解一套
- 廣東省惠州市教育局2025年赴高校公開招聘市直公辦中小學(xué)校教師深圳場備考題庫及完整答案詳解1套
- 2025年衢州市公安局第四期面向社會公開招聘警務(wù)輔助人員備考題庫含答案詳解
- 2025年中國科學(xué)院大氣物理研究所鄭飛課題組科研財務(wù)助理招聘備考題庫及答案詳解1套
- 護理技能教學(xué)視頻
- 《關(guān)于境內(nèi)保險公司在香港市場發(fā)行有關(guān)保險連接證券事項的通知》解讀
- 食品從業(yè)人員健康管理制度(3篇)
- 2025年中醫(yī)執(zhí)業(yè)醫(yī)師資格考試大綱中醫(yī)法律法規(guī)綜合應(yīng)用題試卷及答案
- 2025廣東東莞市公安局南城分局警務(wù)輔助人員招聘11人(第4批)考試重點題庫及答案解析
- GB/T 17119-2025連續(xù)搬運設(shè)備帶承載托輥的帶式輸送機運行功率和張力的計算
- 四川省成都市第七中學(xué)2025-2026學(xué)年高二上學(xué)期11月半期考試英語(含答案)
- (2025版)國家基層高血壓防治管理指南課件
- 2026屆黑龍江省優(yōu)才計劃 中學(xué)生標準學(xué)術(shù)能力測試高三數(shù)學(xué)聯(lián)考試題(含解析)
- 貴州省黔西南州金成實驗學(xué)校2024-2025學(xué)年九年級上學(xué)期期末檢測物理試題(無答案)
- 屠宰場安全生產(chǎn)知識培訓(xùn)課件
- 石油管道巡護安全培訓(xùn)課件
- 膠濟鐵路428事故講解
- 智能教育設(shè)備設(shè)備使用風(fēng)險防控方案
- 防洪影響評價編制培訓(xùn)課件
- GJB3206B-2022技術(shù)狀態(tài)管理
評論
0/150
提交評論