版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省成都外國語高級中學2024屆高一下數(shù)學期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.112.若a,b,c∈R,且滿足a>b>c,則下列不等式成立的是()A.1a<C.a(chǎn)c23.橢圓中以點M(1,2)為中點的弦所在直線斜率為()A. B. C. D.4.如圖,某船在A處看見燈塔P在南偏東方向,后來船沿南偏東的方向航行30km后,到達B處,看見燈塔P在船的西偏北方向,則這時船與燈塔的距離是:A.10kmB.20kmC.D.5.直線是圓在處的切線,點是圓上的動點,則點到直線的距離的最小值等于()A.1 B. C. D.26.已知向量,,若對任意的,恒成立,則角的取值范圍是()A. B.C. D.7.若,則下列不等式正確的是()A. B. C. D.8.在中,角的對邊分別是,若,則()A. B.或 C.或 D.9.函數(shù)的圖象是()A. B. C. D.10.已知直線,與互相垂直,則的值是()A. B.或 C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.12.若正四棱錐的所有棱長都相等,則該棱錐的側(cè)棱與底面所成的角的大小為____.13.求值:_____.14.382與1337的最大公約數(shù)是__________.15.已知函數(shù)y=sin(x+)(>0,-<)的圖象如圖所示,則=________________.16.下列結(jié)論中:①②函數(shù)的圖像關于點對稱③函數(shù)的圖像的一條對稱軸為④其中正確的結(jié)論序號為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,為正三角形,為的中點,,,.(1)證明:平;(2)證明:平面平面.18.已知關于的不等式.(1)若不等式的解集為,求實數(shù)的值;(2)若不等式的解集為,求實數(shù)的取值范圍.19.的內(nèi)角的對邊為,(1)求;(2)若求.20.在四棱錐中,底面是平行四邊形,平面,點,分別為,的中點,且,,.(1)證明:平面;(2)求直線與平面所成角的余弦值.21.設為正項數(shù)列的前項和,且滿足.(1)求的通項公式;(2)令,,若恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.2、C【解析】
通過反例可依次排除A,B,D選項;根據(jù)不等式的性質(zhì)可判斷出C正確.【詳解】A選項:若a=1,b=-2,則1a>1B選項:若a=1,b=12,則1aC選項:c2+1>0又a>b∴ac2D選項:當c=0時,ac=bc本題正確選項:C【點睛】本題考查不等式性質(zhì)的應用,解決此類問題通常采用排除法,利用反例來排除錯誤選項即可,屬于基礎題.3、A【解析】
先設出弦的兩端點的坐標,分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.【詳解】設弦的兩端點為,,代入橢圓得,兩式相減得,即,即,即,即,∴弦所在的直線的斜率為,故選A.【點睛】本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關系.在解決弦長的中點問題,涉及到“中點與斜率”時常用“點差法”設而不求,將弦所在直線的斜率、弦的中點坐標聯(lián)系起來,相互轉(zhuǎn)化,達到解決問題的目的,屬于中檔題.4、C【解析】
在中,利用正弦定理求出得長,即為這時船與燈塔的距離,即可得到答案.【詳解】由題意,可得,即,在中,利用正弦定理得,即這時船與燈塔的距離是,故選C.【點睛】本題主要考查了正弦定理,等腰三角形的判定與性質(zhì),以及特殊角的三角函數(shù)值的應用,其中熟練掌握正弦定理是解答本題的關鍵,著重考查了推理與運算能力,屬于基礎題.5、D【解析】
先求得切線方程,然后用點到直線距離減去半徑可得所求的最小值.【詳解】圓在點處的切線為,即,點是圓上的動點,圓心到直線的距離,∴點到直線的距離的最小值等于.故選D.【點睛】圓中的最值問題,往往轉(zhuǎn)化為圓心到幾何對象的距離的最值問題.此類問題是基礎題.6、A【解析】
利用數(shù)量積運算可將不等式化簡為,根據(jù)恒成立條件可得不等式組,利用三角函數(shù)知識分別求解兩個不等式,取交集得到結(jié)果.【詳解】當時,恒成立,則當時,即,,解得:,當時,即,,解得:,在時恒成立可得:本題正確選項:【點睛】本題考查三角函數(shù)中的恒成立問題的求解,關鍵是能夠根據(jù)數(shù)量積將恒成立不等式轉(zhuǎn)化為兩個三角不等式的求解問題,利用輔助角公式將問題轉(zhuǎn)化為根據(jù)正弦型函數(shù)的值域求解角的范圍的問題.7、C【解析】
根據(jù)不等式性質(zhì),結(jié)合特殊值即可比較大小.【詳解】對于A,當,滿足,但不滿足,所以A錯誤;對于B,當時,不滿足,所以B錯誤;對于C,由不等式性質(zhì)“不等式兩邊同時加上或減去同一個數(shù)或式子,不等式符號不變”,所以由可得,因而C正確;對于D,當時,不滿足,所以D錯誤.綜上可知,C為正確選項,故選:C.【點睛】本題考查了不等式大小比較,不等式性質(zhì)及特殊值的簡單應用,屬于基礎題.8、D【解析】
直接利用正弦定理,即可得到本題答案,記得要檢驗,大邊對大角.【詳解】因為,所以,又,所以,.故選:D【點睛】本題主要考查利用正弦定理求角.9、D【解析】
求出分段函數(shù)的解析式,由此確定函數(shù)圖象.【詳解】由于,根據(jù)函數(shù)解析式可知,D選項符合.故選:D【點睛】本小題主要考查分段函數(shù)圖象的判斷,屬于基礎題.10、B【解析】
根據(jù)直線垂直公式得到答案.【詳解】已知直線,與互相垂直或故答案選B【點睛】本題考查了直線垂直的關系,意在考查學生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
代入分式利用同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式化簡即可.【詳解】.故答案為:2【點睛】本題考查同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式,屬于基礎題.12、【解析】
先作出線面角,再利用三角函數(shù)求解即可.【詳解】如圖,設正四棱錐的棱長為1,作在底面的射影,則為與底面所成角,為正方形的中心,,,,故答案為.【點睛】本題考查線面角,考查學生的計算能力,作出線面角是關鍵.屬于基礎題.13、【解析】
根據(jù)同角三角函數(shù)的基本關系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,同角角三角函數(shù)基本關系主要有:,.屬于基礎題。14、191【解析】
利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因為,,所以382與1337的最大公約數(shù)為191,故填:.【點睛】本題考查利用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公因數(shù),屬于容易題.15、【解析】
由圖可知,16、①③④【解析】
由兩角和的正切公式的變形,化簡可得所求值,可判斷①正確;由正切函數(shù)的對稱中心可判斷②錯誤;由余弦函數(shù)的對稱軸特點可判斷③正確;由同角三角函數(shù)基本關系式和輔助角公式、二倍角公式和誘導公式,化簡可得所求值,可判斷④正確.【詳解】①,故①正確;②函數(shù)的對稱中心為,,則圖象不關于點對稱,故②錯誤;③函數(shù),由為最小值,可得圖象的一條對稱軸為,故③正確;④,故④正確.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì)應用以及三角函數(shù)的恒等變換,意在考查學生的化簡運算能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】
(1)連結(jié)交于,連結(jié),先證明,再證明平;(2)取的中點為,連結(jié),,,先證明平面,再證明平面平面.【詳解】證明:(1)連結(jié)交于,連結(jié),由于棱柱的側(cè)面是平行四邊形,故為的中點,又為的中點,故是的中位線,所以,又平面,平面,所以平面.(2)取的中點為,連結(jié),,,在中,,由,知為正三角形,故,又,,故,所以,又,所以平面,又平面,所以平面平面.【點睛】本題主要考查空間位置關系的證明,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于基礎題.18、(1)(2)【解析】
(1)不等式的解集為說明和1是的兩個實數(shù)根,運用韋達定理,可以求出實數(shù)的值;(2)不等式的解集為,只需,或即可,解不等式組求出實數(shù)的取值范圍.【詳解】(1)若關于的不等式的解集為,則和1是的兩個實數(shù)根,由韋達定理可得,求得.(2)若關于的不等式解集為,則,或,求得或,故實數(shù)的取值范圍為.【點睛】本題考查了已知一元二次不等式的解集求參問題,考查了數(shù)學運算能力19、(1);(2).【解析】
(1)由題目中告訴的,利用正弦定理則可得到,再結(jié)合余弦定理公式求出角的值.(2)根據(jù)第一問求得的的值和題目中告訴的角的值可求得角的值,再利用正弦定理可求得邊和的值.【詳解】(1)由正弦定理,得,由余弦定理,得,又所以.(2)由(1)知:,又所以,又,根據(jù)正弦定理,得,,所以【點睛】本題考查利用正余弦定理求解邊與角.20、(1)見解析(2)【解析】
(1)取中點,連接,,構(gòu)造平行四邊形,由線線平行得到線面平行;(2)根據(jù)線面角的定義作出線面角,在直角三角形中求出數(shù)值.【詳解】(1)證明:取中點,連接,,∵為中點,∴,且,又為中點,底面為平行四邊形,∴,,∴,,即為平行四邊形,∴,又平面,且平面,∴平面.(2)∵平面,平面,∴平面平面,過作,則平面,連結(jié),則為直線與平面所成的夾角,由,,,得,由,得,在中,,得,在中,,∴,即直線與平面所成角的余弦值為.【點睛】這個題目考查了空間中的直線和平面的位置關系.求線面角,一是可以利用等體積計算出直線的端點到面的距離,除以線段長度就是線面角的正弦值;還可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可.21、(1)(2)【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人力資源練習題及答案
- 3~6歲兒童學習與發(fā)展指南測試題(附答案)
- 財會專業(yè)期末考試題(附答案)
- 醫(yī)院招聘醫(yī)生考試題庫及答案
- 德州市技能考試試題及答案
- 畜牧業(yè)機械化試題及答案
- 未來五年溫泉洗浴服務企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 中醫(yī)護理學現(xiàn)代技術
- 北京中西醫(yī)結(jié)合醫(yī)院編外崗位招聘10人參考題庫附答案
- 北京科技大學智能科學與技術學院招聘3人備考題庫必考題
- 復方蒲公英注射液在銀屑病中的應用研究
- 2023屆高考語文二輪復習:小說標題的含義與作用 練習題(含答案)
- 網(wǎng)絡直播創(chuàng)業(yè)計劃書
- 大學任課老師教學工作總結(jié)(3篇)
- 3D打印增材制造技術 課件 【ch01】增材制造中的三維模型及數(shù)據(jù)處理
- 醫(yī)院保潔應急預案
- 化工設備培訓
- 鋼結(jié)構(gòu)安裝施工專項方案
- 高三體育生收心主題班會課件
- FZ/T 90086-1995紡織機械與附件下羅拉軸承和有關尺寸
- 登桿培訓材料課件
評論
0/150
提交評論