版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
漯河市重點中學中考數(shù)學模擬預測題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°2.已知一組數(shù)據(jù)2、x、8、1、1、2的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是()A.3.1;B.4;C.2;D.6.1.3.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.44.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.465.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.6.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠07.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.28.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷9.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC10.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點A(x1,y1),B(x2,y2)在直線y=kx+b上,且直線經(jīng)過第一、三、四象限,當x1<x2時,y1與y2的大小關(guān)系為______________.12.如圖,P是⊙O的直徑AB延長線上一點,PC切⊙O于點C,PC=6,BC:AC=1:2,則AB的長為_____.13.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.14.若關(guān)于x的一元二次方程kx2+2(k+1)x+k-1=0有兩個實數(shù)根,則k的取值范圍是15.如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=(x<0)的圖象相交于點A和點B.當y1>y2>0時,x的取值范圍是_____.16.規(guī)定一種新運算“*”:a*b=a-b,則方程x*2=1*x的解為________.三、解答題(共8題,共72分)17.(8分)某校數(shù)學綜合實踐小組的同學以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如下圖所示:本次調(diào)查人數(shù)共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?18.(8分)(1)計算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化簡,再求值:÷(2+),其中a=.19.(8分)已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.20.(8分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側(cè)),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數(shù)表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最???若存在,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.21.(8分)在某小學“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結(jié)論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結(jié)論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結(jié)論的概率是多少?(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結(jié)論,則小選手可入圍進入復賽,問琪琪進入復賽的概率是多少?22.(10分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:(1)本次調(diào)查的學生有多少人?(2)補全上面的條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是;(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?23.(12分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點M在對稱軸右側(cè)的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.24.小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問題的關(guān)鍵.2、A【解析】∵數(shù)據(jù)組2、x、8、1、1、2的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)按從小到大排列為:2、2、2、1、1、8,∴這組數(shù)據(jù)的中位數(shù)是:(2+1)÷2=3.1.故選A.3、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖4、B【解析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應用與三角形的面積的相關(guān)知識點.5、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.6、C【解析】
分式分母不為0,所以,解得.故選:C.7、B【解析】本題考查的圓與直線的位置關(guān)系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.8、B【解析】
試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數(shù)根.故選B.考點:根的判別式.9、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.10、D【解析】
先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、y1<y1【解析】
直接利用一次函數(shù)的性質(zhì)分析得出答案.【詳解】解:∵直線經(jīng)過第一、三、四象限,∴y隨x的增大而增大,∵x1<x1,∴y1與y1的大小關(guān)系為:y1<y1.故答案為:y1<y1.【點睛】此題主要考查了一次函數(shù)圖象上點的坐標特征,正確掌握一次函數(shù)增減性是解題關(guān)鍵.12、1【解析】PC切⊙O于點C,則∠PCB=∠A,∠P=∠P,
∴△PCB∽△PAC,∴,∵BP=PC=3,
∴PC2=PB?PA,即36=3?PA,
∵PA=12
∴AB=12-3=1.故答案是:1.13、30【解析】
根據(jù)角平分線的定義可得∠PBC=20°,∠PCM=50°,根據(jù)三角形外角性質(zhì)即可求出∠P的度數(shù).【詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【點睛】本題考查及角平分線的定義及三角形外角性質(zhì),三角形的外角等于和它不相鄰的兩個內(nèi)角的和,熟練掌握三角形外角性質(zhì)是解題關(guān)鍵.14、k≥-1【解析】試題解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-13∵原方程是一元二次方程,∴k≠1.考點:根的判別式.15、-2<x<-0.5【解析】
根據(jù)圖象可直接得到y(tǒng)1>y2>0時x的取值范圍.【詳解】根據(jù)圖象得:當y1>y2>0時,x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟悉待定系數(shù)法以及理解函數(shù)圖象與不等式的關(guān)系是解題的關(guān)鍵.16、【解析】
根據(jù)題中的新定義化簡所求方程,求出方程的解即可.【詳解】根據(jù)題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點睛】此題的關(guān)鍵是掌握新運算規(guī)則,轉(zhuǎn)化成一元一元一次方程,再解這個一元一次方程即可.三、解答題(共8題,共72分)17、(1)200,90(2)圖形見解析(3)750人【解析】試題分析:(1)用對于共享單車不了解的人數(shù)20除以對于共享單車不了解的人數(shù)所占得百分比即可得本次調(diào)查人數(shù);用總?cè)藬?shù)乘以使用過共享單車人數(shù)所占的百分比即可得使用過共享單車的人數(shù);(2)用使用過共享單車的總?cè)藬?shù)減去0~2,4~6,6~8的人數(shù),即可得2~4的人數(shù),再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數(shù)所占的百分比即可得每天的騎行路程在2~4千米的人數(shù).試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形統(tǒng)計圖(3)=750(人)答:每天的騎行路程在2~4千米的大約750人18、(1)5+;(2)【解析】試題分析:(1)先分別進行絕對值化簡,0指數(shù)冪、負指數(shù)冪的計算,特殊三角函數(shù)值、二次根式的化簡,然后再按運算順序進行計算即可;(2)括號內(nèi)先通分進行加法運算,然后再進行分式除法運算,最后代入數(shù)值進行計算即可.試題解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)原式==,當a=時,原式==.19、等腰直角三角形【解析】
首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形或等腰直角三角形.考點:勾股定理的逆定理.20、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解析】
(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點的坐標,根據(jù)兩點式求出直線AC的函數(shù)表達式;
(1)設P點的橫坐標為x(-1≤x≤1),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;
(3)根據(jù)D點關(guān)于PE的對稱點為點C(1,-3),點Q(0,-1)點關(guān)于x軸的對稱點為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進而求出最小值和點M,N的坐標;
(4)結(jié)合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖1,此時可以求出F點的兩個坐標.【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點的橫坐標x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數(shù)解析式是(1)設P點的橫坐標為x(﹣1≤x≤1),則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點在E點的上方,∴當時,PE的最大值△ACE的面積最大值(3)D點關(guān)于PE的對稱點為點C(1,﹣3),點Q(0,﹣1)點關(guān)于x軸的對稱點為K(0,1),連接CK交直線PE于M點,交x軸于N點,可求直線CK的解析式為,此時四邊形DMNQ的周長最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時的D和H點重合,CD=1,則AF=1,于是可得F1(1,0),F(xiàn)1(﹣3,0),如圖1,根據(jù)點A和F的坐標中點和點C和點H的坐標中點相同,再根據(jù)|HA|=|CF|,求出綜上所述,滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),,.【點睛】屬于二次函數(shù)綜合題,考查二次函數(shù)與軸的交點坐標,待定系數(shù)法求一次函數(shù)解析式,二次函數(shù)的最值以及平行四邊形的性質(zhì)等,綜合性比較強,難度較大.21、(1)見解析;(2);(3).【解析】
(1)根據(jù)列樹狀圖的步驟和題意分析所有等可能的出現(xiàn)結(jié)果,即可畫出圖形;(2)根據(jù)(1)求出甲、乙兩位評委給出相同結(jié)論的情況數(shù),再根據(jù)概率公式即可求出答案;(3)根據(jù)(1)即可求出琪琪進入復賽的概率.【詳解】(1)畫樹狀圖如下:(2)∵共有8種等可能結(jié)果,只有甲、乙兩位評委給出相同結(jié)論的有2種可能,∴只有甲、乙兩位評委給出相同結(jié)論的概率P=;(3)∵共有8種等可能結(jié)果,三位評委中至少有兩位給出“通過”結(jié)論的有4種可能,∴樂樂進入復賽的概率P=.【點睛】此題考查了列樹狀圖,掌握列樹狀圖的步驟,找出三位評委給出相同結(jié)論的情況數(shù)是本題的關(guān)鍵,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P=.22、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】
(1)根據(jù)喜好A口味的牛奶的學生人數(shù)和所占百分比,即可求出本次調(diào)查的學生數(shù).(2)用調(diào)查總?cè)藬?shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補全統(tǒng)計圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應中心角度數(shù).(3)用總?cè)藬?shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得出必要的信息是解題的關(guān)鍵.23、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】
(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進行判斷;(3)由B、E的坐標可先求得直線BE的解析式,則可求得F點的坐標,當AF為邊時,則有FM∥AN且FM=AN,則可求得M點的縱坐標,代入拋物線解析式可求得M點坐標;當AF為對角線時,由A、F的坐標可求得平行四邊形的對稱中心,可設出M點坐標,則可表示出N點坐標,再由N點在x軸上可得到關(guān)于M點坐標的方程,可求得M點坐標.【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設直線BE解析式為y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)30萬張高端木門、20萬套門套項目環(huán)境影響報告表
- 測振儀使用方法培訓課件
- 菌棒購銷合同模板
- 2026 執(zhí)業(yè)藥師備考避坑指南
- 樹人托管老師培訓
- 活動策劃執(zhí)行教學培訓
- 2026年通信技術(shù)中知識產(chǎn)權(quán)保護的實踐與探索試題
- 2026年托福高分必刷題庫及參考答案集
- 2026年建筑工程設計資質(zhì)考試案例分析與技術(shù)實踐
- 2026年財經(jīng)知識題庫投資理財模擬題
- 婦科微創(chuàng)術(shù)后護理新進展
- 工藝類美術(shù)課件
- 2025年小學蔬菜頒獎典禮
- MFC2000-6微機廠用電快速切換裝置說明書
- TCNAS50-2025成人吞咽障礙患者口服給藥護理學習解讀課件
- 專升本演講稿
- 2024低溫低濁水給水處理設計標準
- 門窗知識文字培訓課件
- 《房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)》解讀
- 2025年國資委公務員面試熱點問題集錦及答案
- 計算機系大數(shù)據(jù)畢業(yè)論文
評論
0/150
提交評論