版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省蘇州市重點學(xué)校中考五模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤2.如圖,直線l是一次函數(shù)y=kx+b的圖象,若點A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.73.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x24.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.5.下列圖形中,是軸對稱圖形的是()A. B. C. D.6.下列運算結(jié)果是無理數(shù)的是()A.3× B. C. D.7.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°8.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當(dāng)t=3時,兩車相距40千米,其中不正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個9.共享單車已經(jīng)成為城市公共交通的重要組成部分,某共享單車公司經(jīng)過調(diào)查獲得關(guān)于共享單車租用行駛時間的數(shù)據(jù),并由此制定了新的收費標準:每次租用單車行駛a小時及以內(nèi),免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差10.方程2x+3=1A.x=3 B.x=4 C.x=5 D.x=﹣5二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為_____.12.因式分解:x2﹣4=.13.如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF=__.14.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當(dāng)OD=AD=3時,這兩個二次函數(shù)的最大值之和等于______.15.甲乙兩種水稻試驗品中連續(xù)5年的平均單位面積產(chǎn)量如下(單位:噸/公頃)品種
第1年
第2年
第3年
第4年
第5年
品種
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
經(jīng)計算,,試根據(jù)這組數(shù)據(jù)估計_____中水稻品種的產(chǎn)量比較穩(wěn)定.16.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.17.如圖,在正方形中,對角線與相交于點,為上一點,,為的中點.若的周長為18,則的長為________.三、解答題(共7小題,滿分69分)18.(10分)一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設(shè)慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖①所示,S與x的函數(shù)關(guān)系圖象如圖②所示:(1)圖中的a=______,b=______.(2)求快車在行駛的過程中S關(guān)于x的函數(shù)關(guān)系式.(3)直接寫出兩車出發(fā)多長時間相距200km?19.(5分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當(dāng)△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當(dāng)△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當(dāng)△ABO是任意三角形時,設(shè)∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關(guān)系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.20.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結(jié)EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求21.(10分)化簡(),并說明原代數(shù)式的值能否等于-1.22.(10分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發(fā)運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當(dāng)t為何值時,△APQ的面積為8cm2?23.(12分)為了貫徹“減負增效”精神,掌握九年級600名學(xué)生每天的自主學(xué)習(xí)情況,某校學(xué)生會隨機抽查了九年級的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時間.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)統(tǒng)計圖中的信息回答下列問題:(1)本次調(diào)查的學(xué)生人數(shù)是人;(2)圖2中α是度,并將圖1條形統(tǒng)計圖補充完整;(3)請估算該校九年級學(xué)生自主學(xué)習(xí)時間不少于1.5小時有人;(4)老師想從學(xué)習(xí)效果較好的4位同學(xué)(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學(xué)習(xí)經(jīng)驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.24.(14分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.求證:△ADE≌△BFE;若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.2、C【解析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數(shù)解析式y(tǒng)=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點睛】本題考核知識點:考查了待定系數(shù)法求一次函數(shù)的解析式,根據(jù)解析式再求函數(shù)值.3、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.4、D【解析】解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.5、B【解析】分析:根據(jù)軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.6、B【解析】
根據(jù)二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數(shù);B選項:原式=,故B是無理數(shù);C選項:原式==6,故C不是無理數(shù);D選項:原式==12,故D不是無理數(shù)故選B.【點睛】考查二次根式的運算,解題的關(guān)鍵是熟練運用二次根式的運算法則,本題屬于基礎(chǔ)題型.7、B【解析】
由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質(zhì)即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點睛】本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.8、A【解析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設(shè)BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當(dāng)y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當(dāng)t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.9、B【解析】
根據(jù)需要保證不少于50%的騎行是免費的,可得此次調(diào)查的參考統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù).【詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù),故選B.【點睛】本題考查了中位數(shù)的知識,中位數(shù)是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數(shù)列的極大或極小值影響,從而在一定程度上提高了中位數(shù)對分布數(shù)列的代表性。10、C【解析】方程兩邊同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,檢驗:當(dāng)x=5時,(x-1)(x+3)≠0,所以x=5是原方程的解,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:首先求得每一次轉(zhuǎn)動的路線的長,發(fā)現(xiàn)每4次循環(huán),找到規(guī)律然后計算即可.詳解:∵AB=4,BC=3,∴AC=BD=5,轉(zhuǎn)動一次A的路線長是:轉(zhuǎn)動第二次的路線長是:轉(zhuǎn)動第三次的路線長是:轉(zhuǎn)動第四次的路線長是:0,以此類推,每四次循環(huán),故頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:∵2017÷4=504…1,∴頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:故答案為點睛:考查旋轉(zhuǎn)的性質(zhì)和弧長公式,熟記弧長公式是解題的關(guān)鍵.12、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點:因式分解-運用公式法13、15°【解析】
根據(jù)平行四邊形的性質(zhì)和圓的半徑相等得到△AOB為等邊三角形,根據(jù)等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據(jù)圓周角定理計算即可.【詳解】解答:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圓周角定理得,故答案為15°.14、【解析】
此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質(zhì)和判定的應(yīng)用,題目比較好,但是有一定的難度,屬于綜合性試題.【詳解】過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案為.【點睛】考核知識點:二次函數(shù)綜合題.熟記性質(zhì),數(shù)形結(jié)合是關(guān)鍵.15、甲【解析】
根據(jù)方差公式分別求出兩種水稻的產(chǎn)量的方差,再進行比較即可.【詳解】甲種水稻產(chǎn)量的方差是:,乙種水稻產(chǎn)量的方差是:,∴0.02<0.124.∴產(chǎn)量比較穩(wěn)定的小麥品種是甲.16、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解析】
(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【點睛】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.17、【解析】
先根據(jù)直角三角形的性質(zhì)求出DE的長,再由勾股定理得出CD的長,進而可得出BE的長,由三角形中位線定理即可得出結(jié)論.【詳解】解:∵四邊形是正方形,∴,,.在中,為的中點,∴.∵的周長為18,,∴,∴.在中,根據(jù)勾股定理,得,∴,∴.在中,∵,為的中點,又∵為的中位線,∴.故答案為:.【點睛】本題考查的是正方形的性質(zhì),涉及到直角三角形的性質(zhì)、三角形中位線定理等知識,難度適中.三、解答題(共7小題,滿分69分)18、(1)a=6,b=;(2);(3)或5h【解析】
(1)根據(jù)S與x之間的函數(shù)關(guān)系式可以得到當(dāng)位于C點時,兩人之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;(2)根據(jù)函數(shù)的圖像可以得到A、B、C、D的點的坐標,利用待定系數(shù)法求得函數(shù)的解析式即可.(3)分兩車相遇前和兩車相遇后兩種情況討論,當(dāng)相遇前令s=200即可求得x的值.【詳解】解:(1)由s與x之間的函數(shù)的圖像可知:當(dāng)位于C點時,兩車之間的距離增加變緩,由此可以得到a=6,∵快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,∴;(2)∵從函數(shù)的圖象上可以得到A、B、C、D點的坐標分別為:(0,600)、(,0)、(6,360)、(10,600),∴設(shè)線段AB所在直線解析式為:S=kx+b,∴解得:k=-160,b=600,設(shè)線段BC所在的直線的解析式為:S=kx+b,∴解得:k=160,b=-600,設(shè)直線CD的解析式為:S=kx+b,解得:k=60,b=0∴(3)當(dāng)兩車相遇前相距200km,此時:S=-160x+600=200,解得:,當(dāng)兩車相遇后相距200km,此時:S=160x-600=200,解得:x=5,∴或5時兩車相距200千米【點睛】本題考查了一次函數(shù)的綜合知識,特別是本題中涉及到了分段函數(shù)的知識,解題時主要自變量的取值范圍.19、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【點睛】本題是四邊形的綜合題,考查了線段垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及直角三角形斜邊上的中線性質(zhì)、平行四邊形的判定與性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.20、(1)證明見解析;(2)EH=【解析】
(1)由題意推出∠EHB=∠OCB,(2)結(jié)合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關(guān)鍵是熟練的掌握圓與相似三角形.21、見解析【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,若原代數(shù)式的值為﹣1,則=﹣1,截至求得x的值,再根據(jù)分式有意義的條件即可作出判斷.【詳解】原式=[===,若原代數(shù)式的值為﹣1,則=﹣1,解得:x=0,因為x=0時,原式?jīng)]有意義,所以原代數(shù)式的值不能等于﹣1.【點睛】本題考查了分式的化簡求值,熟練掌握運算法則是解題的關(guān)鍵.22、(1)t=秒;(1)t=5﹣(s).【解析】
(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應(yīng)邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鉑合金漏板(坩堝)制造工風(fēng)險評估與管理測試考核試卷含答案
- 啤酒糖化工操作測試考核試卷含答案
- 2025年谷胱甘肽及酵母提取物項目發(fā)展計劃
- (一模)株洲市2026屆高三年級教學(xué)質(zhì)量統(tǒng)一檢測化學(xué)試卷(含答案)
- 2025年軋鋼導(dǎo)衛(wèi)裝置項目合作計劃書
- 2023年礦業(yè)開采模塊行業(yè)商業(yè)計劃報
- 2026年智能土壤 pH 值傳感器項目評估報告
- 2025年江蘇省淮安市中考英語真題卷含答案解析
- 環(huán)境污染控制技術(shù)
- 2025年人工智能技術(shù)知識普及試題及答案解析
- 特種工安全崗前培訓(xùn)課件
- 新疆維吾爾自治區(qū)普通高中2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析
- 2026屆福建省三明市第一中學(xué)高三上學(xué)期12月月考歷史試題(含答案)
- 2026年遼寧金融職業(yè)學(xué)院單招職業(yè)技能測試題庫附答案解析
- (正式版)DB51∕T 3342-2025 《爐灶用合成液體燃料經(jīng)營管理規(guī)范》
- 2026北京海淀初三上學(xué)期期末語文試卷和答案
- 2024-2025學(xué)年北京市東城區(qū)五年級(上)期末語文試題(含答案)
- 人工智能在醫(yī)療領(lǐng)域的應(yīng)用
- 2025學(xué)年度人教PEP五年級英語上冊期末模擬考試試卷(含答案含聽力原文)
- 全國中學(xué)生數(shù)學(xué)建模競賽試題及答案
- LY/T 2482.2-2015東北、內(nèi)蒙古林區(qū)森林撫育技術(shù)要求第2部分:小興安嶺、完達山、張廣才嶺和老爺嶺林區(qū)
評論
0/150
提交評論