版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山東省日照市2024年數(shù)學高一下期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知在R上是奇函數(shù),且滿足,當時,,則()A.-2 B.2 C.-98 D.982.已知全集則()A. B. C. D.3.已知正實數(shù)滿足,則的最小值()A.2 B.3 C.4 D.4.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.325.在中,內(nèi)角,,的對邊分別為,,,若,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.最大角為銳角的等腰三角形 D.最大角為鈍角的等腰三角形6.已知函數(shù),則有A.的圖像關于直線對稱 B.的圖像關于點對稱C.的最小正周期為 D.在區(qū)間內(nèi)單調(diào)遞減7.設集合,,若存在實數(shù)t,使得,則實數(shù)的取值范圍是()A. B. C. D.8.下列函數(shù)中,最小值為2的函數(shù)是()A. B.C. D.9.若,滿足,則的最大值為().A. B. C. D.10.在中,根據(jù)下列條件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,,則在方向上的投影為__________.12.如圖是一個算法的流程圖,則輸出的的值是________.13.已知點A(-a,0),B(a,0)(a>0),若圓(x-2)2+(y-2)2=2上存在點C14.若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是______.15.在中,角,,所對的邊分別為,,,若,則角最大值為______.16.已知呈線性相關的變量,之間的關系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計當為時,的值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和;(3)若對任意的,都有成立,求實數(shù)的取值范圍.18.在已知數(shù)列中,,.(1)若數(shù)列中,,求證:數(shù)列是等比數(shù)列;(2)設數(shù)列、的前項和分別為、,是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出的值;若不存在,請說明理由.19.已知小島A的周圍38海里內(nèi)有暗礁,船正向南航行,在B處測得小島A在船的南偏東30°,航行30海里后在C處測得小島A在船的南偏東45°,如果此船不改變航向,繼續(xù)向南航行,問有無觸礁的危險?20.如圖,已知平面是正三角形,.(1)求證:平面平面;(2)求二面角的正切值.21.如圖,已知等腰梯形中,是的中點,,將沿著翻折成,使平面平面.(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)在線段上是否存在點P,使得平面,若存在,求出的值;若不存在,說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由在R上是奇函數(shù)且周期為4可得,即可算出答案【詳解】因為在R上是奇函數(shù),且滿足所以因為當時,所以故選:A【點睛】本題考查的是函數(shù)的奇偶性和周期性,較簡單.2、B【解析】
先求M的補集,再與N求交集.【詳解】∵全集U={0,1,2,3,4},M={0,1,2},∴?UM={3,4}.∵N={2,3},∴(?UM)∩N={3}.故選:B.【點睛】本題考查了交、并、補集的混合運算,是基礎題.3、B【解析】
,當且僅當,即,時的最小值為3.故選B.點睛:本題主要考查基本不等式.在用基本不等式求最值時,應具備三個條件:一正二定三相等.①一正:關系式中,各項均為正數(shù);②二定:關系式中,含變量的各項的和或積必須有一個為定值;③三相等:含變量的各項均相等,取得最值.4、B【解析】
根據(jù),則即可求解.【詳解】因為樣本數(shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【點睛】本題主要考查了方差的概念及求法,屬于容易題.5、D【解析】
先由余弦定理,結(jié)合題中條件,求出,再由,求出,進而可得出三角形的形狀.【詳解】因為,所以,,所以.又,所以,則的形狀為最大角為鈍角的等腰三角形.故選D【點睛】本題主要考查三角形的形狀的判定,熟記余弦定理即可,屬于??碱}型.6、B【解析】
把函數(shù)化簡后再判斷.【詳解】,由正切函數(shù)的性質(zhì)知,A、C、D都錯誤,只有B正確.【點睛】本題考查二倍角公式和正切函數(shù)的性質(zhì).三角函數(shù)的性質(zhì)問題,一般要把函數(shù)化為一個角的一個三角函數(shù)形式,然后結(jié)合相應的三角函數(shù)得出結(jié)論.7、C【解析】
得到圓心距與半徑和差關系得到答案.【詳解】圓心距存在實數(shù)t,使得故答案選C【點睛】本題考查了兩圓的位置關系,意在考查學生的計算能力.8、C【解析】
利用基本不等式及函數(shù)的單調(diào)性即可判斷.【詳解】解:對于.時,,故錯誤.對于.,可得,,當且僅當,即時取等號,故最小值不可能為1,故錯誤.對于,可得,,當且僅當時取等號,最小值為1.對于.,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,故不對;故選:.【點睛】本題考查基本不等式,難點在于應用基本不等式時對“一正二定三等”條件的理解與靈活應用,屬于中檔題.9、D【解析】作出不等式組,所表示的平面區(qū)域,如圖所示,當時,可行域為四邊形內(nèi)部,目標函數(shù)可化為,即,平移直線可知當直線經(jīng)過點時,直線的截距最大,從而最大,此時,,當時,可行域為三角形,目標函數(shù)可化為,即,平移直線可知當直線經(jīng)過點時,直線的截距最大,從而最大,,綜上,的最大值為.故選.點睛:利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標系內(nèi)作出可行域.(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型).(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解.(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值.注意解答本題時不要忽視斜率不存在的情形.10、D【解析】
根據(jù)三角形解的個數(shù)的判斷條件得出各選項中對應的解的個數(shù),于此可得出正確選項.【詳解】對于A選項,,,此時,無解;對于B選項,,,此時,有兩解;對于C選項,,則為最大角,由于,此時,無解;對于D選項,,且,此時,有且只有一解.故選D.【點睛】本題考查三角形解的個數(shù)的判斷,解題時要熟悉三角形個數(shù)的判斷條件,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)數(shù)量積的幾何意義計算.【詳解】在方向上的投影為.故答案為:1.【點睛】本題考查向量的投影,掌握投影的概念是解題基礎.12、【解析】由程序框圖,得運行過程如下:;,結(jié)束循環(huán),即輸出的的值是7.13、3【解析】
利用參數(shù)方程假設C點坐標,表示出AC和BC,利用AC?BC=0可得到a【詳解】設C∴∵∠ACB=90°∴∴當sinα+∴0<a≤3本題正確結(jié)果:3【點睛】本題考查圓中參數(shù)范圍求解的問題,關鍵是能夠利用圓的參數(shù)方程,利用向量數(shù)量積及三角函數(shù)關系求得最值.14、【解析】
令,可得,從而將問題轉(zhuǎn)化為和的圖象有兩個不同交點,作出圖形,可求出答案.【詳解】由題意,令,則,則和的圖象有兩個不同交點,作出的圖象,如下圖,是過點的直線,當直線斜率時,和的圖象有兩個交點.故答案為:.【點睛】本題考查函數(shù)零點問題,考查函數(shù)圖象的應用,考查學生的計算求解能力,屬于中檔題.15、【解析】
根據(jù)余弦定理列式,再根據(jù)基本不等式求最值【詳解】因為所以角最大值為【點睛】本題考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,屬中檔題16、【解析】由表格得,又線性回歸直線過點,則,即,令,得.點睛:本題考查線性回歸方程的求法和應用;求線性回歸方程是??嫉幕A題型,其主要考查線性回歸方程一定經(jīng)過樣本點的中心,一定要注意這一點,如本題中利用線性回歸直線過中心點求出的值.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】
(1)利用遞推公式求出,,遞推到當時,,兩個式子相減,得到,進而求出數(shù)列的通項公式;(2)運用錯位相減法可以求出數(shù)列的前項和;(3)對任意的,都有成立,轉(zhuǎn)化為的最小值即可,利用商比的方法可以確定數(shù)列的單調(diào)性,最后求出實數(shù)的取值范圍.【詳解】(1)數(shù)列{an}中,,.可得時,,即,時,,又,兩式相減可得,化為,可得,即,綜上可得;(2),則前項和,,相減可得,化為;(3)對任意的,都有成立,即為的最小值,由可得,,可得時,遞增,當或2時,取得最小值,則.【點睛】本題考查了已知遞推公式求數(shù)列通項公式,考查了數(shù)列的單調(diào)性,考查了錯位相減法,考查了數(shù)學運算能力.18、(1)見解析;(2)存在,.【解析】
(1)利用等比數(shù)列的定義結(jié)合數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列為等比數(shù)列,并可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用分組求和法與等比數(shù)列的求和公式分別求出數(shù)列、,設,列出關于、、的方程組,解出即可.【詳解】(1)在數(shù)列中,,,則,,且,數(shù)列是以為首項,為公比的等比數(shù)列,;(2),整理得,,,,所以,,若數(shù)列為等差數(shù)列,可設,則,即,則,解得,因此,存在實數(shù),使得數(shù)列為等差數(shù)列.【點睛】本題考查等差數(shù)列的證明、數(shù)列求和以及等差數(shù)列的存在性問題,熟悉等差數(shù)列的定義和通項公式的結(jié)構(gòu)是解題的關鍵,考查推理能力與運算求解能力,屬于中等題.19、繼續(xù)向南航行無觸礁的危險.【解析】試題分析:要判斷船有無觸礁的危險,只要判斷A到BC的直線距離是否大于38海里就可以判斷.解:在三角形ABC中:BC=30,∠B=30°,∠ACB=180°-45°=135°,故∠A=15°由正弦定理得:故于是A到BC的直線距離是Acsin45°==,大于38海里.答:繼續(xù)向南航行無觸礁的危險.考點:本題主要考查正弦定理的應用點評:分析幾何圖形的特征,運用三角形內(nèi)角和定理確定角的關系,有助于應用正弦定理.20、(1)證明見解析;(2).【解析】
(1)取的中點的中點,證明,由根據(jù)線面垂直判定定理可得,可得平面,結(jié)合面面垂直的判定定理,可得平面平面;
(2)過作,連接BM,可以得到為二面角的平面角,解三角形即可求出二面角的正切值.【詳解】解:(1)取BE的中點F.
AE的中點G,連接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四邊形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG?平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,過G作GM⊥DE,連接BM,則BM⊥DE,則∠BMG為二面角A?DE?B的平面角,設AB=BC=2CD=2,則,在Rt△DCE中,CD=1,CE=2,∴,又,由DE?GM=DG?EG得,所以,故面角的正切值為:.【點睛】本題考查了面面垂直的判定定理及二面角的平面角的作法,重點考查了空間想象能力,屬中檔題.21、(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點P,使得平面,且.【解析】
試題分析:(I)根據(jù)直線與平面垂直的判定定理,需證明垂直平面內(nèi)的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進而證得平面.(Ⅱ)由(I)可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據(jù)直線與平面平行的判定定理,只要能找到一點P使得PM平行平面內(nèi)的一條直線即可.由于,故可取線段中點P,中點Q,連結(jié).則,且.由此即可得四邊形是平行四邊形,從而問題得證.試題解析:(I)由題意可知四邊形是平行四邊形,所以,故.又因為,M為AE的中點所以,即又因為,所以四邊形是平行四邊形.所以故.因為平面平面,平面平面,平面所以平面.因為平面,所以.因為,、平面,所以平面.(Ⅱ)以為軸,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理流程圖解析
- 超支預警機制制度
- 診療服務制度
- 2025年樂理八級試卷筆試及答案
- 2025年天星教育集團編輯筆試及答案
- 2025年濟南稅務局筆試真題及答案
- 2025年??途W(wǎng)網(wǎng)易運營筆試及答案
- 2025年考云巖區(qū)事業(yè)單位考試題及答案
- 2025年教師編棗莊市筆試及答案
- 2025年-江北區(qū)點招筆試及答案
- 2025-2026學年北京市西城區(qū)高三(上期)期末考試地理試卷(含答案詳解)
- 贛州市章貢區(qū)2026年社區(qū)工作者(專職網(wǎng)格員)招聘【102人】考試參考題庫及答案解析
- 江蘇高職單招培訓課件
- 2026年山東理工職業(yè)學院單招綜合素質(zhì)考試參考題庫帶答案解析
- 2026年及未來5年市場數(shù)據(jù)中國氟樹脂行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- DB1331∕T 109-2025 雄安新區(qū)建設工程抗震設防標準
- DB37∕T 1317-2025 超細干粉滅火系統(tǒng)技術(shù)規(guī)范
- Scratch講座課件教學課件
- 《低碳醫(yī)院評價指南》(T-SHWSHQ 14-2025)
- 2025至2030中國砷化鎵太陽能電池外延片行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 質(zhì)量環(huán)境及職業(yè)健康安全三體系風險和機遇識別評價分析及控制措施表(包含氣候變化)
評論
0/150
提交評論