版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣州市越秀區(qū)實驗中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓的圓心坐標(biāo)和半徑分別是()A.,2 B.,1 C.,2 D.,12.已知,則下列結(jié)論正確的是()A. B. C. D.不能確定3.等差數(shù)列的前項和為,若,則()A.27 B.36 C.45 D.544.已知函數(shù),則不等式的解集為()A. B. C. D.5.在區(qū)間上隨機選取一個實數(shù),則事件“”發(fā)生的概率是()A. B. C. D.6.已知向量,.且,則()A.2 B. C. D.7.在直角中,,線段上有一點,線段上有一點,且,若,則()A.1 B. C. D.8.函數(shù)的圖象與函數(shù)的圖象的交點個數(shù)為()A.3 B.2 C.1 D.09.已知,若,則等于()A. B.1 C.2 D.10.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能二、填空題:本大題共6小題,每小題5分,共30分。11.不等式x(2x﹣1)<0的解集是_____.12.設(shè)Sn為數(shù)列{an}的前n項和,若Sn=(-1)nan-,n∈N,則a3=________.13.某校老年、中年和青年教師的人數(shù)分別為90,180,160,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有32人,則抽取的樣本中老年教師的人數(shù)為_____14.函數(shù),的遞增區(qū)間為______.15.函數(shù)的定義域為_____________.16.若函數(shù),的最大值為,則的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.化簡:(1);(2).18.已知向量,,且.(1)求的值;(2)求的值.19.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內(nèi)的概率.(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:A:所有芒果以10元/千克收購;B:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?20.在中,角的對邊分別為,的面積是30,.(1)求;(2)若,求的值.21.在中,角所對的邊分別為.且.(1)求的值;(2)若,求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
將圓的一般方程配成標(biāo)準(zhǔn)方程,由此求得圓心和半徑.【詳解】由,得,所以圓心為,半徑為.【點睛】本小題主要考查圓的一般方程化為標(biāo)準(zhǔn)方程,考查圓心和半徑的求法,屬于基礎(chǔ)題.2、C【解析】
根據(jù)題意,求出與的值,比較易得,變形可得答案.【詳解】解:根據(jù)題意,,,易得,則有,故選:C.【點睛】本題主要考查不等式的大小比較,屬于基礎(chǔ)題.3、B【解析】
利用等差數(shù)列的性質(zhì)進行化簡,由此求得的值.【詳解】依題意,所以,故選B.【點睛】本小題主要考查等差數(shù)列的性質(zhì),考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.4、B【解析】
先判斷函數(shù)的單調(diào)性,把轉(zhuǎn)化為自變量的不等式求解.【詳解】可知函數(shù)為減函數(shù),由,可得,整理得,解得,所以不等式的解集為.故選B.【點睛】本題考查函數(shù)不等式,通常根據(jù)函數(shù)的單調(diào)性轉(zhuǎn)化求解,一般不代入解析式.5、B【解析】
根據(jù)求出的范圍,再由區(qū)間長度比即可得出結(jié)果.【詳解】區(qū)間的長度為;由,解得,即,區(qū)間長度為,事件“”發(fā)生的概率是.故選B.【點睛】本題主要考查與長度有關(guān)的幾何概型,熟記概率計算公式即可,屬于基礎(chǔ)題型.6、B【解析】
通過得到,再利用和差公式得到答案.【詳解】向量,.且故答案為B【點睛】本題考查了向量平行,正切值的計算,意在考查學(xué)生的計算能力.7、D【解析】
依照題意采用解析法,建系求出目標(biāo)向量坐標(biāo),用數(shù)量積的坐標(biāo)表示即可求出結(jié)果.【詳解】如圖,以A為原點,AC,AB所在直線分別為軸建系,依題設(shè)A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故選D.【點睛】本題主要考查解析法在向量中的應(yīng)用,意在考查學(xué)生數(shù)形結(jié)合的能力.8、B【解析】由已知g(x)=(x-2)2+1,所以其頂點為(2,1),又f(2)=2ln2∈(1,2),可知點(2,1)位于函數(shù)f(x)=2lnx圖象的下方,故函數(shù)f(x)=2lnx的圖象與函數(shù)g(x)=x2-4x+5的圖象有2個交點.9、A【解析】
首先根據(jù)?(cos﹣3)cos+sin(sin﹣3)=﹣1,并化簡得出,再化為Asin()形式即可得結(jié)果.【詳解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化簡得,即sin()=,則sin()=故選A.【點睛】本題考查了三角函數(shù)的化簡求值以及向量的數(shù)量積的運算,屬于基礎(chǔ)題.10、A【解析】
由正弦定理化已知條件為邊的關(guān)系,然后由余弦定理可判斷角的大?。驹斀狻俊遖sinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【點睛】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
求出不等式對應(yīng)方程的實數(shù)根,即可寫出不等式的解集,得到答案.【詳解】由不等式對應(yīng)方程的實數(shù)根為0和,所以該不等式的解集是.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、-【解析】當(dāng)n=3時,S3=a1+a2+a3=-a3-,則a1+a2+2a3=-,當(dāng)n=4時,S4=a1+a2+a3+a4=a4-,兩式相減得a3=-.13、【解析】
根據(jù)分層抽樣的定義建立比例關(guān)系,即可得到答案?!驹斀狻吭O(shè)抽取的樣本中老年教師的人數(shù)為,學(xué)校所有的中老年教師人數(shù)為270人由分層抽樣的定義可知:,解得:故答案為【點睛】本題考查分層抽樣,考查學(xué)生的計算能力,屬于基礎(chǔ)題。14、[0,](開區(qū)間也行)【解析】
根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間,以及題中條件,即可求出結(jié)果.【詳解】由得:,又,所以函數(shù),的遞增區(qū)間為.故答案為【點睛】本題主要考查正弦型函數(shù)的單調(diào)區(qū)間,熟記正弦函數(shù)的單調(diào)區(qū)間即可,屬于??碱}型.15、【解析】函數(shù)的定義域為故答案為16、【解析】
利用兩角差的正弦公式化簡函數(shù)的解析式為,由的范圍可得的范圍,根據(jù)最大值可得的值.【詳解】∵函數(shù)=2()=,∵,∴∈[,],又∵的最大值為,所以的最大值為,即=,解得.故答案為【點睛】本題主要考查兩角差的正弦公式的應(yīng)用,正弦函數(shù)的定義域和最值,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)中可將“1”轉(zhuǎn)化成,即可求解;(2)結(jié)合誘導(dǎo)公式化簡,再結(jié)合和角公式化簡【詳解】(1)(2)【點睛】本題考查三角函數(shù)的化簡求值,合理運用公式化簡,熟悉基本的和差角公式和誘導(dǎo)公式是解題關(guān)鍵,屬于中檔題18、(1);(2)【解析】
(1)由向量垂直的坐標(biāo)運算可得,再求解即可;(2)利用三角函數(shù)誘導(dǎo)公式可得原式,再構(gòu)造齊次式求解即可.【詳解】解:(1)因為,所以,因為,,所以,即,故.(2).【點睛】本題考查了向量垂直的坐標(biāo)運算,重點考查了三角函數(shù)誘導(dǎo)公式及構(gòu)造齊次式求值,屬中檔題.19、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】
(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內(nèi),設(shè)中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設(shè)質(zhì)量在內(nèi)的4個芒果分別為,,,,質(zhì)量在內(nèi)的2個芒果分別為,.從這6個芒果中選出3個的情況共有,,,,,,,,,,,,,,,,,,,,共計20種,其中恰有一個在內(nèi)的情況有,,,,,,,,,,,,共計12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計元,由于,故B方案獲利更多,應(yīng)選B方案.【點睛】本題主要考查了頻率分布直方圖的用法以及古典概型的方法,同時也考查了根據(jù)樣本估計總體的方法等.屬于中等題型.20、(1)144;(2)5.【解析】
(1)由同角的三角函數(shù)關(guān)系,由,可以求出的值,再由面積公式可以求出的值,最后利用平面向量數(shù)量積的公式求出的值;(2)由(1)可知的值,再結(jié)合已知,可以求出的值,由余弦定理可以求出的值.【詳解】(1),又因為的面積是30,所以,因此(2)由(1)可知,與聯(lián)立,組成方程組:,解得或,不符合題意舍去,由余弦定理可知:.【點睛】本題考查了同角的三角函數(shù)關(guān)系、三角形面積公式、余弦定理、平面向量的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標(biāo)志物在藥物臨床試驗中的生物標(biāo)志物研究進展
- 生物反饋技術(shù)的BCI教學(xué)應(yīng)用
- 酒店集團客房部經(jīng)理的面試問題集
- 市場策劃崗位求職面談題目
- 副總經(jīng)理招聘考試題
- 球囊擴張在TAVR中的關(guān)鍵作用
- 龍湖集團工程部專員技能考核題庫含答案
- 市場營銷專員崗位面試寶典及答案
- 初級會計師備考技巧及常見考點分析
- 茶葉加工機械項目可行性研究報告(立項備案申請)
- 專用設(shè)備制造業(yè)生產(chǎn)成本研究
- 創(chuàng)新創(chuàng)業(yè)理論與實踐智慧樹知到期末考試答案章節(jié)答案2024年陜西師范大學(xué)
- GB/T 44090-2024登山健身步道配置要求
- QB/T 2660-2024 化妝水(正式版)
- DCS集散控制系統(tǒng)課件
- 日志分析報告模板
- JJG 443-2023燃油加油機(試行)
- q235力學(xué)性能和化學(xué)成分-中英
- 康復(fù)科護士的康復(fù)護理質(zhì)量評估和護理效果改進
- 國家開放大學(xué)-傳感器與測試技術(shù)實驗報告(實驗成績)
- 動火作業(yè)安全告知
評論
0/150
提交評論