云南省文山州硯山二中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
云南省文山州硯山二中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
云南省文山州硯山二中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
云南省文山州硯山二中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
云南省文山州硯山二中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省文山州硯山二中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)實數(shù)滿足約束條件,則的最大值為()A. B.4 C.5 D.2.已知點均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.3.已知直線yx+2,則其傾斜角為()A.60° B.120° C.60°或120° D.150°4.設(shè)函數(shù)的最大值為,最小值為,則與滿足的關(guān)系是()A. B.C. D.5.若是異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交6.將函數(shù)的圖像上所有的點向左平移個單位長度,再把所得圖像上各點的橫坐標伸長到原來的3倍(縱坐標不變),得到函數(shù)的圖像,則在區(qū)間上的最小值為()A. B. C. D.7.化簡:()A. B. C. D.8.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.129.化簡的結(jié)果是()A. B. C. D.10.已知數(shù)列的前項和為,直線與圓:交于兩點,且.記,其前項和為,若存在,使得有解,則實數(shù)取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若關(guān)于的方程()在區(qū)間有實根,則最小值是____.12.已知,向量的夾角為,則的最大值為_____.13.已知圓C:,點M的坐標為(2,4),過點N(4,0)作直線交圓C于A,B兩點,則的最小值為________14.如圖為函數(shù)(,,,)的部分圖像,則函數(shù)解析式為________15.實數(shù)x、y滿足,則的最大值為________.16.的內(nèi)角的對邊分別為,,,若的面積為,則角_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.對于函數(shù)和實數(shù),若存在,使成立,則稱為函數(shù)關(guān)于的一個“生長點”.若為函數(shù)關(guān)于的一個“生長點”,則______.18.在中,成等差數(shù)列,分別為的對邊,并且,,求.19.已知兩個定點,動點滿足.設(shè)動點的軌跡為曲線,直線.(1)求曲線的軌跡方程;(2)若與曲線交于不同的兩點,且(為坐標原點),求直線的斜率;(3)若,是直線上的動點,過作曲線的兩條切線,切點為,探究:直線是否過定點.20.設(shè)為正項數(shù)列的前項和,且滿足.(1)求的通項公式;(2)令,,若恒成立,求的取值范圍.21.已知函數(shù)f(x)=sin22x-π4(1)求當t=1時,求fπ(2)求gt(3)當-12≤t≤1時,要使關(guān)于t的方程g(t)=

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

作出可行域,作出目標函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,向上平移直線,增大,當直線過點時,得最大值為,故選:A.【點睛】本題考查簡單的線性規(guī)劃,解題關(guān)鍵是作出可行域和目標函數(shù)對應(yīng)的直線.2、A【解析】

設(shè)是的外心,則三棱錐體積最大時,平面,球心在上.由此可計算球半徑.【詳解】如圖,設(shè)是的外心,則三棱錐體積最大時,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設(shè)球半徑為,則由得,解得,∴球體積為.故選A.【點睛】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.3、B【解析】

根據(jù)直線方程求出斜率,根據(jù)斜率和傾斜角之間的關(guān)系即可求出傾斜角.【詳解】由已知得直線的斜率,則傾斜角為120°,故選:B.【點睛】本題考查斜率和傾斜角的關(guān)系,是基礎(chǔ)題.4、B【解析】

將函數(shù)化為一個常數(shù)函數(shù)與一個奇函數(shù)的和,再利用奇函數(shù)的對稱性可得答案.【詳解】因為,令,則,所以為奇函數(shù),所以,所以,故選:B【點睛】本題考查了兩角差的余弦公式,考查了奇函數(shù)的對稱性的應(yīng)用,屬于中檔題.5、D【解析】

若為異面直線,且直線,則與可能相交,也可能異面,但是與不能平行,若,則,與已知矛盾,選項、、不正確故選.6、A【解析】

先按照圖像變換的知識求得的解析式,然后根據(jù)三角函數(shù)求最值的方法,求得在上的最小值.【詳解】圖像上所有的點向左平移個單位長度得到,把所得圖像上各點的橫坐標伸長到原來的倍(縱坐標不變)得到,由得,故在區(qū)間上的最小值為.故選A.【點睛】本小題主要考查三角函數(shù)圖像變換,考查三角函數(shù)值域的求法,屬于基礎(chǔ)題.7、A【解析】

.故選A.【點睛】考查向量數(shù)乘和加法的幾何意義,向量加法的運算.8、C【解析】

由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準確求出數(shù)值,進行判斷,是解題關(guān)鍵。9、D【解析】

直接利用同角三角函數(shù)基本關(guān)系式以及二倍角公式化簡求值即可.【詳解】.故選.【點睛】本題主要考查應(yīng)用同角三角函數(shù)基本關(guān)系式和二倍角公式對三角函數(shù)的化簡求值.10、D【解析】

根據(jù)題意,先求出弦長,再表示出,得到,求出數(shù)列的通項公式,再表示出,用錯位相減求和求出,再求解即可.【詳解】根據(jù)題意,圓的半徑,圓心到直線的距離,所以弦長,所以,當時,,所以,時,,所以,得,所以數(shù)列是以為首項,為公比的等比數(shù)列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因為,所以,所以.故選:D【點睛】本題主要考查求圓的弦長、由和求數(shù)列通項、錯位相減求數(shù)列的和和解不等式有解的情況,考查學(xué)生的分析轉(zhuǎn)化能力和計算能力,屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將看作是關(guān)于的直線方程,則表示點到點的距離的平方,根據(jù)距離公式可求出點到直線的距離最小,再結(jié)合對勾函數(shù)的單調(diào)性,可求出最小值?!驹斀狻繉⒖醋魇顷P(guān)于的直線方程,表示點與點之間距離的平方,點到直線的距離為,又因為,令,在上單調(diào)遞增,所以,所以的最小值為.【點睛】本題主要考查點到直線的距離公式以及對勾函數(shù)單調(diào)性的應(yīng)用,意在考查學(xué)生轉(zhuǎn)化思想的的應(yīng)用。12、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.13、8【解析】

先將所求化為M到AB中點的距離的最小值問題,再求得AB中點的軌跡為圓,利用點M到圓心的距離減去半徑求得結(jié)果.【詳解】設(shè)A、B中點為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點M到P的距離減去半徑,又,所以,故答案為8【點睛】本題考查了向量的加法運算,考查了求圓中弦中點軌跡的幾何方法,考查了點點距公式,考查了分析解決問題的能力,屬于中檔題.14、【解析】

由函數(shù)的部分圖像,先求得,得到,再由,得到,結(jié)合,求得,即可得到函數(shù)的解析式.【詳解】由題意,根據(jù)函數(shù)的部分圖像,可得,所以,又由,即,又由,即,解得,即,又因為,所以,所以.故答案為:.【點睛】本題主要考查了利用三角函數(shù)的圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準確計算是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)約束條件,畫出可行域,將目標函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【詳解】由約束條件,畫出可行域,如圖所示,化目標函數(shù)為,由圖可知,當直線過點時,直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【點睛】本題考查線性規(guī)劃求最大值,屬于簡單題.16、【解析】

根據(jù)三角形面積公式和余弦定理可得,從而求得;由角的范圍可確定角的取值.【詳解】故答案為:【點睛】本題考查余弦定理和三角形面積公式的應(yīng)用問題,關(guān)鍵是能夠配湊出符合余弦定理的形式,進而得到所求角的三角函數(shù)值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

由為函數(shù)關(guān)于的一個“生長點”,得到由誘導(dǎo)公式可得答案.【詳解】解:為函數(shù)關(guān)于的一個“生長點”,,故答案為:.【點睛】本題主要考查利用誘導(dǎo)公式進行化簡求值,及函數(shù)的創(chuàng)新題型,屬于中檔題.18、或.【解析】

先算出,從而得到,也就是,結(jié)合面積得到,再根據(jù)余弦定理可得,故可解得的大小.【詳解】∵成等差數(shù)列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③聯(lián)立③與②解得或,綜上,或.【點睛】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.19、(1);(2);(3).【解析】

(1)設(shè)點P坐標為(x,y),運用兩點的距離公式,化簡整理,即可得到所求軌跡的方程;(2)由,則點到邊的距離為,由點到線的距離公式得直線的斜率;(3)由題意可知:O,Q,M,N四點共圓且在以O(shè)Q為直徑的圓上,設(shè),則圓的圓心為運用直徑式圓的方程,得直線的方程為,結(jié)合直線系方程,即可得到所求定點.【詳解】(1)設(shè)點的坐標為由可得,,整理可得所以曲線的軌跡方程為.(2)依題意,,且,則點到邊的距離為即點到直線的距離,解得所以直線的斜率為.(3)依題意,,則都在以為直徑的圓上是直線上的動點,設(shè)則圓的圓心為,且經(jīng)過坐標原點即圓的方程為,又因為在曲線上由,可得即直線的方程為由且可得,解得所以直線是過定點.【點睛】本題考查點的軌跡方程的求法,注意運用兩點的距離公式,考查直線和圓相交的弦長公式,考查直線恒過定點的求法,考查化簡整理的運算能力,屬于中檔題.20、(1)(2)【解析】

(1)代入求得,根據(jù)與的關(guān)系可求得,可知數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求得結(jié)果;驗證后可得最終結(jié)果;(2)由(1)可得,采用裂項相消的方法求得,可知,從而得到的范圍.【詳解】(1)由題知:,……①令得:,解得:當時,……②①-②得:∴,即是以為首項,為公差的等差數(shù)列經(jīng)驗證滿足(2)由(1)知:即【點睛】本題考查等差數(shù)列通項公式的求解、裂項相消法求和,關(guān)鍵是能夠利用與的關(guān)系證得數(shù)列為等差數(shù)列,從而求得通項公式,屬于常規(guī)題型.21、(1)-4(2)g(t)=t2【解析】

(1)直接代入計算得解;(2)先求出sin(2x-π4)∈

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論