版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙一中2023-2024學年高三下學期聯(lián)考數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在復平面內(nèi),復數(shù)(為虛數(shù)單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.3.我國古代有著輝煌的數(shù)學研究成果,其中的《周髀算經(jīng)》、《九章算術》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學的重要文獻.這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.4.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.5.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.46.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.47.設m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,8.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.9.若,,,點C在AB上,且,設,則的值為()A. B. C. D.10.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且11.已知隨機變量的分布列是則()A. B. C. D.12.已知i是虛數(shù)單位,則1+iiA.-12+32i二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中常數(shù)項是___________.14.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個零點,則的取值范圍是__________.15.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.16.函數(shù)在內(nèi)有兩個零點,則實數(shù)的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(18.(12分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.19.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin20.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經(jīng)過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設直線的斜率分別是,當直線的縱截距為1時,有數(shù)列滿足,設數(shù)列的前n項和為,已知存在正整數(shù)使得,求m的值.21.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數(shù)圖象的一條對稱軸方程為且,求的值.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
化簡復數(shù)為、的形式,可以確定對應的點位于的象限.【詳解】解:復數(shù)故復數(shù)對應的坐標為位于第三象限故選:.【點睛】本題考查復數(shù)代數(shù)形式的運算,復數(shù)和復平面內(nèi)點的對應關系,屬于基礎題.2、B【解析】
利用古典概型概率計算方法分析出符合題意的基本事件個數(shù),結合組合數(shù)的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數(shù)的計算,考查學生分析問題的能力,難度較易.3、D【解析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結果.【詳解】《周髀算經(jīng)》、《九章算術》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.4、B【解析】
根據(jù)拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據(jù)拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應用,圓的幾何性質(zhì)應用,屬于中檔題.5、D【解析】可以是共4個,選D.6、D【解析】
利用導數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數(shù)的幾何意義,考查運算求解能力,是基礎題7、B【解析】
根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.8、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.9、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.10、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運算求解的能力,屬于中檔題.11、C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.12、D【解析】
利用復數(shù)的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.14、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結合圖象可知,<b<2,故答案為.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內(nèi)到外依次求值.(2)當給出函數(shù)值求自變量的值時,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.15、2.【解析】
由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結果:【點睛】本題考查了雙曲線和的標準方程及其性質(zhì),涉及到點到直線距離公式的考查,屬于基礎題.16、【解析】
設,,設,函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設,,則.原函數(shù)等價于函數(shù),即有兩個解.設,則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當時,易知不成立;當時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.【點睛】本題考查了函數(shù)零點問題,意在考查學生的轉(zhuǎn)化能力和計算能力,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學生的計算能力和綜合應用能力.18、(Ⅰ)(Ⅱ)函數(shù)的定義域為,值域為【解析】
(1)由為第二象限角及的值,利用同角三角函數(shù)間的基本關系求出及的值,再代入中即可得到結果.(2)函數(shù)解析式利用二倍角和輔助角公式將化為一個角的正弦函數(shù),根據(jù)的范圍,即可得到函數(shù)值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數(shù)的定義域為.化簡,得,因為,且,,所以,所以.所以函數(shù)的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數(shù)的基本關系式,三角函數(shù)函數(shù)值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數(shù)關系式的問題,意在考查學生的轉(zhuǎn)化能力和計算求解能力,屬于??碱}型.19、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題解析:(1)由cosB應用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因為b=32得34又因為ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關系定理可知綜上a+c∈(考點:1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應用.20、(1)(2)【解析】
(1)設出直線的方程,再與拋物線聯(lián)立方程組,進而求得點的坐標,結合弦長即可求得拋物線的方程;(2)設直線的方程,運用韋達定理可得,可得之間的關系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設過拋物線焦點的直線方程為,與拋物線方程聯(lián)立得:,設,所以,,,所以拋物線方程為(2)設直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關系,考查了韋達定理和運用裂項法求數(shù)列的和,考查了運算能力,屬于中檔題.21、(1)(2)【解析】
(1)由已知利用三角函數(shù)恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進而求得的值,利用三角函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 4513.6-2017 不定形耐火材料 第 6 部分:物理性能的測定》專題研究報告
- 《GB-T 25838-2010核電廠安全級電阻溫度探測器的質(zhì)量鑒定》專題研究報告
- 林權抵押融資擔保合同
- 中藥材行業(yè)中藥材供應鏈管理專員崗位招聘考試試卷及答案
- 2026年檢驗科工作計劃(4篇)
- 2025年70歲換領駕照三力測試題及答案
- 2025年“十八項醫(yī)療核心制度”培訓考試試題及答案
- 2026年度教師培訓計劃
- 2025年高強4號玻璃纖維合作協(xié)議書
- 2025年生物農(nóng)藥及微生物農(nóng)藥項目建議書
- T/CECS 10227-2022綠色建材評價屋面綠化材料
- 區(qū)域醫(yī)學檢驗中心項目建設方案
- 小學四年級安全教育上冊教學計劃小學四年級安全教育教案
- 個人優(yōu)勢與劣勢分析
- VCR接頭鎖緊工作程序
- 2025閥門裝配工藝規(guī)程
- 非計劃拔管風險評估及護理
- 求數(shù)列的通項公式2-累加累乘法構造法1課件-2024-2025學年高二上學期數(shù)學人教A版(2019)選擇性必修第二冊
- 小學數(shù)學教學中融入中國傳統(tǒng)文化的實踐研究
- 2020-2025年中國激光測量儀行業(yè)投資研究分析及發(fā)展前景預測報告
- 企業(yè)安全生產(chǎn)法律法規(guī)知識培訓課件
評論
0/150
提交評論