版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省宿遷市沭陽縣高三新高考數(shù)學試題一模模擬考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.2.已知復數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.33.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.4.某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結論一定正確的是()A.年該工廠的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計下來產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加5.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.6.設f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.7.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關8.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)9.設實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1410.雙曲線的漸近線方程是()A. B. C. D.11.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.12.已知復數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則__________.14.已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為________.15.在中,已知,則的最小值是________.16.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市調(diào)硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調(diào)查者中隨機選取2人進行追蹤調(diào)查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.18.(12分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82819.(12分)如圖,在四棱錐中,側棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.20.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.21.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.22.(10分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質(zhì)的應用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎題.2、A【解析】,故,故選A.3、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內(nèi)在聯(lián)系.4、C【解析】
根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計下來產(chǎn)量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數(shù)據(jù)處理能力,屬于基礎題.5、D【解析】
先根據(jù)向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.6、D【解析】
利用是偶函數(shù)化簡,結合在區(qū)間上的單調(diào)性,比較出三者的大小關系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎題.7、D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質(zhì),意在考查學生對該知識的理解掌握水平和分析推理能力.8、C【解析】
由奇函數(shù)的性質(zhì)可得,進而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的應用,考查了一元二次不等式的解法,屬于中檔題.9、D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當目標函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結合求線性目標函數(shù)的最值,屬于基礎題.10、C【解析】
根據(jù)雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質(zhì)的合理運用.11、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于中檔題.12、D【解析】
根據(jù)復數(shù)z滿足,利用復數(shù)的除法求得,再根據(jù)復數(shù)的概念求解.【詳解】因為復數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為,由二倍角公式得到,故得到.故答案為.14、【解析】
由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設雙曲線的左、右焦點分別為,,因為左、右焦點和點為某個等腰三角形的三個頂點,當時,,由可得,等式兩邊同除可得,解得(舍);當時,,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應用,考查分類討論思想.15、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉(zhuǎn)化是解題關鍵.屬于中檔題.16、2【解析】
根據(jù)為等邊三角形建立的關系式,從而可求離心率.【詳解】據(jù)題設分析知,,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關系式是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】
(1)由頻率和為可知,根據(jù)求得,從而計算得到頻數(shù),補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應的概率,由此得到分布列;根據(jù)數(shù)學期望的計算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;;,的分布列為:.(3)來自的可能性更大.【點睛】本題考查概率與統(tǒng)計部分知識的綜合應用,涉及到頻數(shù)、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布的隨機變量的分布列與數(shù)學期望的求解、統(tǒng)計估計等知識;考查學生的運算和求解能力.18、(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(Ⅲ)見解析,【解析】
(Ⅰ)直接根據(jù)頻率和為1計算得到答案.(Ⅱ)完善列聯(lián)表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數(shù)學期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認為交通安全意識與性別有關(Ⅲ)的取值為所以的分布列為期望.【點睛】本題考查了獨立性檢驗,分布列,數(shù)學期望,意在考查學生的計算能力和綜合應用能力.19、(1)為中點,理由見解析;(2)當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點,可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標系,利用向量法求出當點在線段靠近的三等分點時,直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點,證明如下:分別為中點,又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標系則,設直線與平面所成角為,則取平面的法向量為則令,則所以當時,等號成立即當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【點睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學生的直觀想象與運算求解能力.20、≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當且僅當(a+b)·(a-b)≥0時取等號,∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.21、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當?shù)男甭蕿闀r和斜率不為時的情況列出相應式子,即可得出直線與圓相切;由知,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 淺談小學二年級語文識字教學論文
- 水利工程水流速計算方法介紹
- 室外工程驗收與竣工報告樣本
- 電大法律文書案例分析及應用
- 產(chǎn)科疑難病例討論會議管理辦法
- 工程項目風險評估及控制措施
- 化工廠崗位安全操作規(guī)程
- RTK技術在石油管線探測的應用報告
- 文化傳媒項目預算編制技巧
- 砌體工程常見質(zhì)量缺陷及防治措施
- 收藏 各行業(yè)標準及其歸口的行業(yè)部門
- MDT指導下IBD生物制劑的個體化給藥方案
- 導游畢業(yè)設計路線方案
- 外賬會計外賬協(xié)議書
- 2024年中水北方勘測設計研究有限責任公司招聘考試真題
- T-ZZB 3570-2023 工業(yè)用丙烯酰胺
- 現(xiàn)代服務業(yè)勞動課件
- 2023年中考-四川成都地理真題+答案
- 口腔種植進修匯報
- 頭痛病的中醫(yī)護理常規(guī)
- 云南罰沒財物管理辦法
評論
0/150
提交評論