版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省荊門(mén)市鐘祥一中新高考數(shù)學(xué)全真模擬密押卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在R上的函數(shù)y=fx滿(mǎn)足fx≤2x-1A. B. C. D.2.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.3.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線(xiàn)x=對(duì)稱(chēng);②它的最小正周期為;③它的圖象關(guān)于點(diǎn)(,1)對(duì)稱(chēng);④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號(hào)是()A.①② B.②③ C.①②④ D.②③④4.已知等比數(shù)列的各項(xiàng)均為正數(shù),設(shè)其前n項(xiàng)和,若(),則()A.30 B. C. D.625.存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過(guò)點(diǎn)M且與橢圓在此點(diǎn)的切線(xiàn)垂直的直線(xiàn)經(jīng)過(guò)點(diǎn),則橢圓離心率的取值范圍是()A. B. C. D.6.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.7.已知正方體的體積為,點(diǎn),分別在棱,上,滿(mǎn)足最小,則四面體的體積為A. B. C. D.8.若數(shù)列滿(mǎn)足且,則使的的值為()A. B. C. D.9.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.10.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿(mǎn)足要求的排隊(duì)方法數(shù)為().A.432 B.576 C.696 D.96011.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線(xiàn)SC與OE所成角的正切值為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.實(shí)數(shù),滿(mǎn)足,如果目標(biāo)函數(shù)的最小值為,則的最小值為_(kāi)______.14.已知實(shí)數(shù),滿(mǎn)足約束條件則的最大值為_(kāi)_______.15.已知集合,若,則__________.16.如圖,在體積為V的圓柱中,以線(xiàn)段上的點(diǎn)O為項(xiàng)點(diǎn),上下底面為底面的兩個(gè)圓錐的體積分別為,,則的值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.18.(12分)已知直線(xiàn)過(guò)橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線(xiàn)段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過(guò)原點(diǎn)的直線(xiàn)l與線(xiàn)段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.19.(12分)已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)在拋物線(xiàn)上,,直線(xiàn)過(guò)點(diǎn),且與拋物線(xiàn)交于,兩點(diǎn).(1)求拋物線(xiàn)的方程及點(diǎn)的坐標(biāo);(2)求的最大值.20.(12分)已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.(1)討論的單調(diào)性(2)求實(shí)數(shù)和a的值(3)證明21.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿(mǎn)足,證明:.22.(10分)在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱(chēng),排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱(chēng)是解題的關(guān)鍵.2、D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.3、B【解析】
根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對(duì)稱(chēng)性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【詳解】因?yàn)閒(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對(duì)稱(chēng)軸,故①錯(cuò)誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(diǎn)(,1)對(duì)稱(chēng),故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯(cuò)誤;故選:B【點(diǎn)睛】本題考查圖象的平移變換和正弦函數(shù)的對(duì)稱(chēng)性、單調(diào)性和最小正周期等性質(zhì);考查運(yùn)算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對(duì)稱(chēng)性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型4、B【解析】
根據(jù),分別令,結(jié)合等比數(shù)列的通項(xiàng)公式,得到關(guān)于首項(xiàng)和公比的方程組,解方程組求出首項(xiàng)和公式,最后利用等比數(shù)列前n項(xiàng)和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項(xiàng)公式可得:,因此.故選:B【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.5、D【解析】
根據(jù)題意利用垂直直線(xiàn)斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^(guò)點(diǎn)M橢圓的切線(xiàn)方程為,所以切線(xiàn)的斜率為,由,解得,即,所以,所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問(wèn)題,屬于基礎(chǔ)題.6、B【解析】
由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過(guò)圖象經(jīng)過(guò)點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對(duì)應(yīng)正弦曲線(xiàn)中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識(shí);考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.7、D【解析】
由題意畫(huà)出圖形,將所在的面延它們的交線(xiàn)展開(kāi)到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線(xiàn)展開(kāi)到與所在的面共面,三線(xiàn)共線(xiàn)時(shí),最小,
∴
設(shè)正方體的棱長(zhǎng)為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問(wèn)題,考查計(jì)算能力,是中檔題.8、C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.9、B【解析】
由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對(duì)值不等式求得結(jié)果.【詳解】由題意知:定義域?yàn)椋?,為偶函?shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問(wèn)題;奇偶性的作用是能夠確定對(duì)稱(chēng)區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡(jiǎn)不等式.10、B【解析】
先把沒(méi)有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類(lèi)加法、分步乘法原理,得滿(mǎn)足要求的排隊(duì)方法數(shù)為種.故選:B.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,在分類(lèi)時(shí),要注意不重不漏的原則,本題是一道中檔題.11、D【解析】
可過(guò)點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線(xiàn)SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過(guò)點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線(xiàn)SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線(xiàn)所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線(xiàn)分線(xiàn)段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因?yàn)椋杂沙绦蚩驁D知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進(jìn)而確定出C點(diǎn)坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線(xiàn)的截距最大時(shí),取得最小值,此時(shí)直線(xiàn)為,作出直線(xiàn),交于A點(diǎn),由圖象可知,目標(biāo)函數(shù)在該點(diǎn)取得最小值,所以直線(xiàn)也過(guò)A點(diǎn),由,得,代入,得,所以點(diǎn)C的坐標(biāo)為.等價(jià)于點(diǎn)與原點(diǎn)連線(xiàn)的斜率,所以當(dāng)點(diǎn)為點(diǎn)C時(shí),取得最小值,最小值為,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)線(xiàn)性規(guī)劃的問(wèn)題,在解題的過(guò)程中,注意正確畫(huà)出約束條件對(duì)應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.14、1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線(xiàn)的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線(xiàn)的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃問(wèn)題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.15、1【解析】
分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無(wú)序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿(mǎn)足互異性.16、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計(jì)算即得.【詳解】由題得,,得.故答案為:【點(diǎn)睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點(diǎn)列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿(mǎn)足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對(duì)于任意實(shí)數(shù)都成立,所以.此時(shí),則.由,解得.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線(xiàn)與曲線(xiàn),有且只有兩個(gè)公共點(diǎn)”.對(duì)函數(shù)求導(dǎo),得.由,解得,.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,所以?dāng)或時(shí),直線(xiàn)與曲線(xiàn),有且只有兩個(gè)公共點(diǎn).即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.18、(1)(2)【解析】
(1)由直線(xiàn)可得橢圓右焦點(diǎn)的坐標(biāo)為,由中點(diǎn)可得,且由斜率公式可得,由點(diǎn)在橢圓上,則,二者作差,進(jìn)而代入整理可得,即可求解;(2)設(shè)直線(xiàn),點(diǎn)到直線(xiàn)的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長(zhǎng)公式求得,利用點(diǎn)到直線(xiàn)距離求得,根據(jù)直線(xiàn)l與線(xiàn)段AB(不含端點(diǎn))相交,可得,即,進(jìn)而整理?yè)Q元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線(xiàn)與x軸交于點(diǎn),所以橢圓右焦點(diǎn)的坐標(biāo)為,故,因?yàn)榫€(xiàn)段AB的中點(diǎn)是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線(xiàn)l的斜率存在,設(shè)直線(xiàn),代入,得,解得或,設(shè),則,則,因?yàn)榈街本€(xiàn)的距離分別是,由于直線(xiàn)l與線(xiàn)段AB(不含端點(diǎn))相交,所以,即,所以,四邊形的面積,令,,則,所以,當(dāng),即時(shí),,因此四邊形面積的最大值為.【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查橢圓中的四邊形面積問(wèn)題,考查直線(xiàn)與橢圓的位置關(guān)系的應(yīng)用,考查運(yùn)算能力.19、(1),;(2)1.【解析】
(1)根據(jù)拋物線(xiàn)上的點(diǎn)到焦點(diǎn)和準(zhǔn)線(xiàn)的距離相等,可得p值,即可求拋物線(xiàn)C的方程從而可得解;(2)設(shè)直線(xiàn)l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設(shè)A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點(diǎn)F是拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),P(2,y0)是拋物線(xiàn)上一點(diǎn),|PF|=3,∴23,解得:p=2,∴拋物線(xiàn)C的方程為y2=4x,∵點(diǎn)P(2,n)(n>0)在拋物線(xiàn)C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設(shè)直線(xiàn)l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設(shè)A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個(gè)不同實(shí)根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當(dāng)m時(shí),取最大值1.【點(diǎn)睛】本題考查拋物線(xiàn)方程的求法,考查向量的數(shù)量積的最大值的求法,考查拋物線(xiàn)、直線(xiàn)方程、韋達(dá)定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題.20、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見(jiàn)解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項(xiàng)相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域?yàn)?,且,令,則有,由,可得,可知當(dāng)x變化時(shí),的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域?yàn)?,且,由已知得,即,①由可得,,②?lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時(shí),,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時(shí),,即,亦即,這時(shí),故可得,取,可得,而,故.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問(wèn)題是近年高考命題的熱點(diǎn),利
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 粉狀化妝品制造工安全生產(chǎn)能力考核試卷含答案
- 快件派送員安全培訓(xùn)水平考核試卷含答案
- 硫酸生產(chǎn)工崗前師帶徒考核試卷含答案
- 冷拉絲工改進(jìn)能力考核試卷含答案
- 侍酒師改進(jìn)水平考核試卷含答案
- 樹(shù)樁盆景工安全生產(chǎn)知識(shí)強(qiáng)化考核試卷含答案
- 金屬材管拉拔工標(biāo)準(zhǔn)化測(cè)試考核試卷含答案
- 2025年云南城市建設(shè)職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題附答案
- 2024年西疇縣事業(yè)單位聯(lián)考招聘考試真題匯編附答案
- 2024年海南州特崗教師招聘考試真題題庫(kù)附答案
- 2026年1月福建廈門(mén)市集美區(qū)后溪鎮(zhèn)衛(wèi)生院補(bǔ)充編外人員招聘16人筆試備考題庫(kù)及答案解析
- 2025 年大學(xué)人工智能(AI 應(yīng)用)期中測(cè)試卷
- 重慶市渝中區(qū)(2025年)輔警協(xié)警筆試筆試真題(附答案)
- 暴雪車(chē)輛行駛安全培訓(xùn)課件
- 2026年七臺(tái)河職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試模擬試題帶答案解析
- 2026年吉林司法警官職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試備考試題帶答案解析
- 2025內(nèi)蒙古潤(rùn)蒙能源有限公司招聘22人考試題庫(kù)附答案解析(奪冠)
- 2026年國(guó)家電網(wǎng)招聘之電網(wǎng)計(jì)算機(jī)考試題庫(kù)500道有答案
- 年味課件教學(xué)課件
- 中國(guó)臨床腫瘤學(xué)會(huì)(csco)胃癌診療指南2025
- 廣東省廣州市2025年上學(xué)期八年級(jí)數(shù)學(xué)期末考試試卷附答案
評(píng)論
0/150
提交評(píng)論