江西省于都縣三中高三第二次模擬考試新高考數學試卷及答案解析_第1頁
江西省于都縣三中高三第二次模擬考試新高考數學試卷及答案解析_第2頁
江西省于都縣三中高三第二次模擬考試新高考數學試卷及答案解析_第3頁
江西省于都縣三中高三第二次模擬考試新高考數學試卷及答案解析_第4頁
江西省于都縣三中高三第二次模擬考試新高考數學試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省于都縣三中高三第二次模擬考試新高考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知類產品共兩件,類產品共三件,混放在一起,現需要通過檢測將其區(qū)分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為()A. B. C. D.2.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-23.國家統計局服務業(yè)調查中心和中國物流與采購聯合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經理指數(PMI)如下圖所示.則下列結論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數為49.4%D.12個月的PMI值的中位數為50.3%4.設遞增的等比數列的前n項和為,已知,,則()A.9 B.27 C.81 D.5.已知,則()A. B. C. D.6.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.627.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.8.已知函數,則方程的實數根的個數是()A. B. C. D.9.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.210.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.11.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.12.設復數滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.各項均為正數的等比數列中,為其前項和,若,且,則公比的值為_____.14.已知雙曲線的左右焦點分別關于兩漸近線對稱點重合,則雙曲線的離心率為_____15.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.16.已知,那么______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設H在AC上,,若,求PH與平面PBC所成角的正弦值.18.(12分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大?。唬á颍┮阎?,求的大小.19.(12分)已知函數.(1)求函數的單調區(qū)間;(2)若,證明.20.(12分)設函數.(1)時,求的單調區(qū)間;(2)當時,設的最小值為,若恒成立,求實數t的取值范圍.21.(12分)已知是公比為的無窮等比數列,其前項和為,滿足,________.是否存在正整數,使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補充在上面問題中并作答.22.(10分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據分步計數原理,由古典概型概率公式可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【點睛】本題考查了分步乘法計數原理的應用,古典概型概率計算公式的應用,屬于基礎題.2、C【解析】

利用通項公式找到的系數,令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.3、D【解析】

根據圖形中的信息,可得頻率、平均值的估計、眾數、中位數,從而得到答案.【詳解】對A,從圖中數據變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數為49.4%,故C正確,;對D,12個月的PMI值的中位數為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數、中位數計算,考查數據處理能力,屬于基礎題.4、A【解析】

根據兩個已知條件求出數列的公比和首項,即得的值.【詳解】設等比數列的公比為q.由,得,解得或.因為.且數列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.5、C【解析】

利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數的符號.6、B【解析】

根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.7、C【解析】

設,則,,,設,根據化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.8、D【解析】

畫出函數,將方程看作交點個數,運用圖象判斷根的個數.【詳解】畫出函數令有兩解,則分別有3個,2個解,故方程的實數根的個數是3+2=5個故選:D【點睛】本題綜合考查了函數的圖象的運用,分類思想的運用,數學結合的思想判斷方程的根,難度較大,屬于中檔題.9、A【解析】

設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.10、A【解析】

由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.11、A【解析】

根據平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.12、D【解析】

根據復數運算,即可容易求得結果.【詳解】.故選:D.【點睛】本題考查復數的四則運算,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將已知由前n項和定義整理為,再由等比數列性質求得公比,最后由數列各項均為正數,舍根得解.【詳解】因為即又等比數列各項均為正數,故故答案為:【點睛】本題考查在等比數列中由前n項和關系求公比,屬于基礎題.14、【解析】

雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學生的計算能力,確定一條漸近線的斜率為1是關鍵,屬于基礎題.15、【解析】

以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數量積的坐標運算可得,再根據輔助角公式以及三角函數的性質即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數的性質,屬于中檔題.16、【解析】

由已知利用誘導公式可求,進而根據同角三角函數基本關系即可求解.【詳解】∵,∴,,∴.故答案為:.【點睛】本小題主要考查誘導公式、同角三角函數的基本關系式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)記,連結,推導出,平面,由此能證明平面平面;(2)推導出,平面,連結,由題意得為的重心,,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結,中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結,由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關系等基礎知識,考查運算求解能力,是中檔題.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由正弦定理邊化角,再結合轉化即可求解;(Ⅱ)可設,由,再由余弦定理解得,對中,由余弦定理有,通過勾股定理逆定理可得,進而得解【詳解】(Ⅰ)由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.(Ⅱ)設,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【點睛】本題考查正弦定理和余弦定理的綜合運用,屬于中檔題19、(1)單調遞減區(qū)間為,,無單調遞增區(qū)間(2)證明見解析【解析】

(1)求導,根據導數的正負判斷單調性,(2)整理,化簡為,令,求的單調性,以及,即證.【詳解】解:(1)函數定義域為,則,令,,則,當,,單調遞減;當,,單調遞增;故,,,,故函數的單調遞減區(qū)間為,,無單調遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當時,,所以在上單調遞減,則,,則在上恒成立,所以在上單調遞減,所以要證原不等式成立,只需證當時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導數研究函數的單調性,利用導數證明不等式,函數的最值問題,屬于中檔題.20、(1)的增區(qū)間為,減區(qū)間為;(2).【解析】

(1)求出函數的導數,由于參數的范圍對導數的符號有影響,對參數分類,再研究函數的單調區(qū)間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當時,,故函數在上是減函數,所以成立;當時,若則,故函數在上是增函數,即對時,,與題意不符;綜上,為所求.【點睛】本題考查導數在最大值與最小值問題中的應用,求解本題關鍵是根據導數研究出函數的單調性,由最值的定義得出函數的最值,本題中第一小題是求出函數的單調區(qū)間,第二小題是一個求函數的最值的問題,此類題運算量較大,轉化靈活,解題時極易因為變形與運算出錯,故做題時要認真仔細.21、見解析【解析】

選擇①或②或③,求出的值,然后利用等比數列的求和公式可得出關于的不等式,判斷不等式是否存在符合條件的正整數解,在有解的情況下,解出不等式,進而可得出結論.【詳解】選擇①:因為,所以,所以.令,即,,所以使得的正整數的最小值為;選擇②:因為,所以,.因為,所以不存在滿足條件的正整數;選擇③:因為,所以,所以.令,即,整理得.當為偶數時,原不等式無解;當為奇數時,原不等式等價于,所以使得的正整數的最小值為.【點睛】本題考查了等比數列的通項公式求和公式,考查了推理能力與計算能力,屬于中檔題.22、(1)見解析;(2).【解析】

(1)設點、,求出直線、的方程,與拋物線的方程聯立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設點到直線、的距離分別為、,求出,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論