版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省邵陽市邵東縣創(chuàng)新實驗學(xué)校2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,那么在方向上的投影為()A.2 B. C.1 D.2.某廠家生產(chǎn)甲、乙、丙三種不同類型的飲品?產(chǎn)量之比為2:3:4.為檢驗該廠家產(chǎn)品質(zhì)量,用分層抽樣的方法抽取一個容量為72的樣本,則樣本中乙類型飲品的數(shù)量為A.16 B.24 C.32 D.483.設(shè)函數(shù),則()A.2 B.4 C.8 D.164.已知甲,乙,丙三人去參加某公司面試,他們被該公司錄取的概率分別是,,,且三人錄取結(jié)果相互之間沒有影響,則他們?nèi)酥兄辽儆幸蝗吮讳浫〉母怕蕿椋ǎ〢. B. C. D.5.下列說法不正確的是()A.空間中,一組對邊平行且相等的四邊形是一定是平行四邊形;B.同一平面的兩條垂線一定共面;C.過直線上一點可以作無數(shù)條直線與這條直線垂直,且這些直線都在同一個平面內(nèi);D.過一條直線有且只有一個平面與已知平面垂直.6.若,,則方程有實數(shù)根的概率為()A. B. C. D.7.已知函數(shù)(,)的部分圖像如圖所示,則的值分別是()A. B.C. D.8.一個長方體共一頂點的三條棱長分別是,這個長方體它的八個頂點都在同一個球面上,這個球的表面積是()A.12π B.18π C.36π D.6π9.已知圓和兩點,,若圓上存在點,使得,則的最大值為()A.7 B.6 C.5 D.410.設(shè)為所在平面內(nèi)一點,若,則下列關(guān)系中正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最大值為______.12.已知,,則當(dāng)最大時,________.13.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.14.已知腰長為的等腰直角△中,為斜邊的中點,點為該平面內(nèi)一動點,若,則的最小值________.15._____________.16.已知等差數(shù)列滿足,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在已知數(shù)列中,,.(1)若數(shù)列中,,求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列、的前項和分別為、,是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出的值;若不存在,請說明理由.18.已知數(shù)列的前項和為.(1)求這個數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.已知數(shù)列的前項和為,點在直線上.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.20.自變量在什么范圍取值時,函數(shù)的值等于0?大于0呢?小于0呢?21.從半徑為1的半圓出發(fā),以此向內(nèi)、向外連續(xù)作半圓,且后一個半圓的直徑為前一個半圓的半徑,如此下去,可得到無數(shù)個半圓.(1)求出所有這些半圓圍城的封閉圖形的周長;(2)求出所有這些半圓圍城的封閉圖形的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)定義可知,在方向上的投影為,代入即可求解.【詳解】,,那么在方向上的投影為.故選:C.【點睛】本題考查向量數(shù)量積的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎(chǔ)試題.2、B【解析】
根據(jù)分層抽樣各層在總體的比例與在樣本的比例相同求解.【詳解】因為分層抽樣總體和各層的抽樣比例相同,所以各層在總體的比例與在樣本的比例相同,所以樣本中乙類型飲品的數(shù)量為.故選B.【點睛】本題考查分層抽樣,依據(jù)分層抽樣總體和各層的抽樣比例相同.3、B【解析】
根據(jù)分段函數(shù)定義域,代入可求得,根據(jù)的值再代入即可求得的值.【詳解】因為所以所以所以選B【點睛】本題考查了根據(jù)定義域求分段函數(shù)的值,依次代入即可,屬于基礎(chǔ)題.4、B【解析】
由題意,可先求得三個人都沒有被錄取的概率,接下來求至少有一人被錄取的概率,利用對立事件的概率公式,求得結(jié)果.【詳解】甲、乙、丙三人都沒有被錄取的概率為,所以三人中至少有一人被錄取的概率為,故選B.【點睛】該題考查的是有關(guān)概率的求解問題,關(guān)鍵是掌握對立事件的概率加法公式,求得結(jié)果.5、D【解析】一組對邊平行就決定了共面;同一平面的兩條垂線互相平行,因而共面;這些直線都在同一個平面內(nèi)即直線的垂面;把書本的書脊垂直放在桌上就明確了6、B【解析】方程有實數(shù)根,則:,即:,則:,如圖所示,由幾何概型計算公式可得,滿足題意的概率值為:.本題選擇B選項.7、B【解析】
通過函數(shù)圖像可計算出三角函數(shù)的周期,從而求得w,再代入一個最低點即可得到答案.【詳解】,,又,,,又,,故選B.【點睛】本題主要考查三角函數(shù)的圖像,通過周期求得w是解決此類問題的關(guān)鍵.8、A【解析】
先求長方體的對角線的長度,就是球的直徑,然后求出它的表面積.【詳解】長方體的體對角線的長是,所以球的半徑是:,所以該球的表面積是,故選A.【點睛】該題考查的是有關(guān)長方體的外接球的表面積問題,在解題的過程中,首先要明確長方體的外接球的球心應(yīng)在長方體的中心處,即長方體的體對角線是其外接球的直徑,從而求得結(jié)果.9、B【解析】由題意知,點P在以原點(0,0)為圓心,以m為半徑的圓上,又因為點P在已知圓上,所以只要兩圓有交點即可,所以,故選B.考點:本小題主要考查兩圓的位置關(guān)系,考查數(shù)形結(jié)合思想,考查分析問題與解決問題的能力.10、A【解析】
∵∴?=3(?);∴=?.故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】
首先畫出可行域,然后判斷目標(biāo)函數(shù)的最優(yōu)解,從而求出目標(biāo)函數(shù)的最大值.【詳解】如圖,畫出可行域,作出初始目標(biāo)函數(shù),平移目標(biāo)函數(shù),當(dāng)目標(biāo)函數(shù)過點時,目標(biāo)函數(shù)取得最大值,,解得,.故填:7.【點睛】本題考查了線性規(guī)劃問題,屬于基礎(chǔ)題型.12、【解析】
根據(jù)正切的和角公式,將用的函數(shù)表示出來,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【詳解】故可得則當(dāng)且僅當(dāng),即時,此時有故答案為:.【點睛】本題考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.13、【解析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進(jìn)而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.14、【解析】
如圖建立平面直角坐標(biāo)系,∴,當(dāng)sin時,得到最小值為,故選.15、【解析】,故填.16、【解析】
由等差數(shù)列的性質(zhì)計算.【詳解】∵是等差數(shù)列,∴,∴.故答案為:1.【點睛】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.等差數(shù)列的性質(zhì)如下:在等差數(shù)列中,,則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)存在,.【解析】
(1)利用等比數(shù)列的定義結(jié)合數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列為等比數(shù)列,并可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用分組求和法與等比數(shù)列的求和公式分別求出數(shù)列、,設(shè),列出關(guān)于、、的方程組,解出即可.【詳解】(1)在數(shù)列中,,,則,,且,數(shù)列是以為首項,為公比的等比數(shù)列,;(2),整理得,,,,所以,,若數(shù)列為等差數(shù)列,可設(shè),則,即,則,解得,因此,存在實數(shù),使得數(shù)列為等差數(shù)列.【點睛】本題考查等差數(shù)列的證明、數(shù)列求和以及等差數(shù)列的存在性問題,熟悉等差數(shù)列的定義和通項公式的結(jié)構(gòu)是解題的關(guān)鍵,考查推理能力與運算求解能力,屬于中等題.18、(1)(2)【解析】
(1)當(dāng)且時,利用求得,經(jīng)驗證時也滿足所求式子,從而可得通項公式;(2)由(1)求得,利用錯位相減法求得結(jié)果.【詳解】(1)當(dāng)且時,…①當(dāng)時,,也滿足①式數(shù)列的通項公式為:(2)由(1)知:【點睛】本題考查利用求解數(shù)列通項公式、錯位相減法求解數(shù)列的前項和的問題,關(guān)鍵是能夠明確當(dāng)數(shù)列通項為等差與等比乘積時,采用錯位相減法求和,屬于??碱}型.19、(1)(2)【解析】
(1)先由題意得到,求出,再由,作出,得到數(shù)列為等比數(shù)列,進(jìn)而可求出其通項公式;(2)先由(1)得到,再由錯位相減法,即可求出結(jié)果.【詳解】解:(1)由題可得.當(dāng)時,,即.由題設(shè),,兩式相減得.所以是以2為首項,2為公比的等比數(shù)列,故.(2)由(1)可得,所以,.兩邊同乘以得.上式右邊錯位相減得.所以.化簡得.【點睛】本題主要考查求數(shù)列的通項公式,以及數(shù)列的前項和,熟記等比數(shù)列的通項公式與求和公式,以及錯位相減法求數(shù)列的和即可,屬于??碱}型.20、當(dāng)或時,函數(shù)的值等于0;當(dāng)時,函數(shù)的值大于0;當(dāng)或時,函數(shù)的值小于0.【解析】
將問題轉(zhuǎn)化為解方程和解不等式,以及,分別求解即可.【詳解】由題:由得:或;由得:;由得:或,綜上所述:當(dāng)或時,函數(shù)的值等于0;當(dāng)時,函數(shù)的值大于0;當(dāng)或時,函數(shù)的值小于0.【點睛】此題考查解二次方程和二次不等式,關(guān)鍵在于熟練掌握二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 會議代表權(quán)益保障制度
- 2026年楊建華課題組招聘備考題庫附答案詳解
- 2026年香格里拉市醫(yī)保局現(xiàn)面向社會公開招聘勞務(wù)派遣人員備考題庫附答案詳解
- 2026年珠海市育德學(xué)校公開招聘教師備考題庫及參考答案詳解
- 山東大學(xué)2026年輔導(dǎo)員招聘備考題庫及一套完整答案詳解
- 養(yǎng)老院入住老人滿意度調(diào)查與反饋制度
- 企業(yè)員工培訓(xùn)與技能發(fā)展路徑目標(biāo)制度
- 企業(yè)內(nèi)部保密工作培訓(xùn)制度
- 養(yǎng)老院老人康復(fù)設(shè)施維修人員行為規(guī)范制度
- 2026年戶外運動租賃協(xié)議
- 2025美國心臟協(xié)會心肺復(fù)蘇(CPR)與心血管急救(ECC)指南解讀課件
- 智能建造概論題庫及答案
- 室內(nèi)水性樹脂砂漿施工方案
- 云南省昆明市西山區(qū)民中2026屆化學(xué)高一第一學(xué)期期中考試模擬試題含解析
- 渣土清運服務(wù)合同范本
- 【七年級上冊】線段中的動點問題專項訓(xùn)練30道
- 社工法律培訓(xùn)課件
- 現(xiàn)狀箱涵內(nèi)掛管施工方案
- 2022保得威爾JB-TG-PTW-6600E 火災(zāi)報警控制器(聯(lián)動型)使用說明書
- 品質(zhì)檢查報告快速生成工具
- 店面停氣處理方案(3篇)
評論
0/150
提交評論