2025屆河南省滑縣高一下數(shù)學期末考試模擬試題含解析_第1頁
2025屆河南省滑縣高一下數(shù)學期末考試模擬試題含解析_第2頁
2025屆河南省滑縣高一下數(shù)學期末考試模擬試題含解析_第3頁
2025屆河南省滑縣高一下數(shù)學期末考試模擬試題含解析_第4頁
2025屆河南省滑縣高一下數(shù)學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省滑縣高一下數(shù)學期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等差數(shù)列,,,則此數(shù)列前項和等于().A. B. C. D.2.若點為圓C:的弦MN的中點,則弦MN所在直線的方程為()A. B. C. D.3.要得到函數(shù)的圖像,只需要將函數(shù)的圖像()A.向右平移個長度單位 B.向左平移個長度單位C.向右平移個長度單位 D.向左平移個長度單位4.不等式的解集為,則不等式的解集為()A.或 B. C. D.或5.已知,并且是第二象限的角,那么的值等于()A. B. C. D.6.在中,角A,B,C所對的邊分別為a,b,c,若,,則的值為()A.4 B. C. D.7.若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列也是等比數(shù)列.若數(shù)列是等差數(shù)列,可類比得到關于等差數(shù)列的一個性質為().A.是等差數(shù)列B.是等差數(shù)列C.是等差數(shù)列D.是等差數(shù)列8.已知,下列不等式中成立的是()A. B. C. D.9.某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是A. B. C. D.10.某學生四次模擬考試時,其英語作文的減分情況如下表:考試次數(shù)x

1

2

3

4

所減分數(shù)y

4.5

4

3

2.5

顯然所減分數(shù)y與模擬考試次數(shù)x之間有較好的線性相關關系,則其線性回歸方程為()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.25二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期是________12.如圖,四棱錐中,所有棱長均為2,是底面正方形中心,為中點,則直線與直線所成角的余弦值為____________.13.函數(shù),的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍是_____.14.某工廠生產甲、乙、丙三種型號的產品,產品數(shù)量之比為3:5:7,現(xiàn)用分層抽樣的方法抽出容量為的樣本,其中甲種產品有18件,則樣本容量=.15.在正四面體中,棱與所成角大小為________.16.經過點且在x軸上的截距等于在y軸上的截距的直線方程是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在直四棱柱中,底面為菱形,為中點.(1)求證:平面;(2)求證:.18.如圖,在四棱錐中,,底面是矩形,側面底面,是的中點.(1)求證:平面;(2)求證:平面.19.已知公差不為0的等差數(shù)列{an}滿足a3=9,a(1)求{a(2)設數(shù)列{bn}滿足bn=1n(20.等差數(shù)列的首項為23,公差為整數(shù),且第6項為正數(shù),從第7項起為負數(shù).求此數(shù)列的公差及前項和.21.某大橋是交通要塞,每天擔負著巨大的車流量.已知其車流量(單位:千輛)是時間(,單位:)的函數(shù),記為,下表是某日橋上的車流量的數(shù)據(jù):03691215182124(千輛)3.01.02.95.03.11.03.15.03.1經長期觀察,函數(shù)的圖象可以近似地看做函數(shù)(其中,,,)的圖象.(1)根據(jù)以上數(shù)據(jù),求函數(shù)的近似解析式;(2)為了緩解交通壓力,有關交通部門規(guī)定:若車流量超過4千輛時,核定載質量10噸及以上的大貨車將禁止通行,試估計一天內將有多少小時不允許這種貨車通行?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故選D2、A【解析】

根據(jù)題意,先求出直線PC的斜率,根據(jù)MN與PC垂直求出MN的斜率,由點斜式,即可求出結果.【詳解】由題意知,圓心的坐標為,則,由于MN與PC垂直,故MN的斜率,故弦MN所在的直線方程為,即.故選A【點睛】本題主要考查求弦所在直線方程,熟記直線的點斜式方程即可,屬于??碱}型.3、D【解析】

根據(jù)的圖像變換規(guī)律求解即可【詳解】設平移量為,則由,滿足:,故由向左平移個長度單位可得到故選:D【點睛】本題考查函數(shù)的圖像變換規(guī)律,屬于基礎題4、A【解析】不等式的解集為,的兩根為,,且,即,解得則不等式可化為解得故選5、A【解析】

根據(jù)同角三角函數(shù)關系,進行求解即可.【詳解】因為,故又因為是第二象限的角,故故.故選:A.【點睛】本題考查同角三角函數(shù)關系的簡單使用,屬基礎題.6、B【解析】

由正弦定理可得,,代入即可求解.【詳解】∵,,∴由正弦定理可得,,則.故選:B.【點睛】本題考查正弦定理的簡單應用,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎題.7、B【解析】試題分析:本題是由等比數(shù)列與等差數(shù)列的相似性質,推出有關結論:由“等比”類比到“等差”,由“幾何平均數(shù)”類比到“算數(shù)平均數(shù)”;所以,所得結論為是等差數(shù)列.考點:類比推理.8、A【解析】

逐個選項進行判斷即可.【詳解】A選項,因為,所以.當時即不滿足選項B,C,D.故選A.【點睛】此題考查不等式的基本性質,是基礎題.9、B【解析】試題分析:由題意,這是幾何概型問題,班車每30分鐘發(fā)出一輛,到達發(fā)車站的時間總長度為40,等車不超過10分鐘的時間長度為20,故所求概率為,選B.【考點】幾何概型【名師點睛】這是全國卷首次考查幾何概型,求解幾何概型問題的關鍵是確定“測度”,常見的測度有長度、面積、體積等.10、D【解析】試題分析:先求樣本中心點,利用線性回歸方程一定過樣本中心點,代入驗證,可得結論.解:先求樣本中心點,,由于線性回歸方程一定過樣本中心點,代入驗證可知y=﹣0.7x+5.25,滿足題意故選D.點評:本題考查線性回歸方程,解題的關鍵是利用線性回歸方程一定過樣本中心點,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先利用二倍角余弦公式對函數(shù)解析式進行化簡整理,進而利用三角函數(shù)最小正周期的公式求得函數(shù)的最小正周期.【詳解】解:f(x)=1﹣2sin2x=cos2x∴函數(shù)最小正周期Tπ故答案為π.【點睛】本題主要考查了二倍角的化簡和三角函數(shù)的周期性及其求法.考查了三角函數(shù)的基礎的知識的應用.12、.【解析】

以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出直線與直線所成角的余弦值.【詳解】解:四棱錐中,所有棱長均為2,是底面正方形中心,為中點,,平面,以為原點,為軸,為軸,為軸,建立如圖所示的空間直角坐標系,則,,,,,∴,,設直線與直線所成角為,則,直線與直線所成角的余弦值為.故答案為:.【點睛】本題主要考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,屬于中檔題.13、【解析】

作出其圖像,可只有兩個交點時k的范圍為.故答案為14、【解析】試題分析:由題意得,解得,故答案為.考點:分層抽樣.15、【解析】

根據(jù)正四面體的結構特征,取中點,連,,利用線面垂直的判定證得平面,進而得到,即可得到答案.【詳解】如圖所示,取中點,連,,正四面體是四個全等正三角形圍成的空間封閉圖形,所有棱長都相等,所以,,且,所以平面,又由平面,所以,所以棱與所成角為.【點睛】本題主要考查了異面直線所成角的求解,以及直線與平面垂直的判定及應用,著重考查了推理與論證能力,屬于基礎題.16、或【解析】

當直線不過原點時,設直線的方程為,把點代入求得的值,即可求得直線方程,當直線過原點時,直線的方程為,綜合可得答案.【詳解】當直線不過原點時,設直線的方程為,把點代入可得:,即此時直線的方程為:當直線過原點時,直線的方程為,即綜上可得:滿足條件的直線方程為:或故答案為:或【點睛】過原點的直線橫縱截距都為0,在解題的時候容易漏掉.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)連接與與交于點,在利用中位線證明平行.(2)首先證明平面,由于平面,證明得到結論.【詳解】證明:(1)連接與交于點,連接因為底面為菱形,所以為中點因為為中點,所以平面,平面,所以平面(2)在直四棱柱中,平面,平面所以因為底面為菱形,所以所以,,,平面,平面所以平面因為平面,所以【點睛】本題考查直棱柱得概念和性質,考查線面平行的判定定理,考查線面垂直的判定定理,考查了學生的邏輯能力和書寫能力,屬于簡單題18、(1)證明見解析;(2)證明見解析.【解析】

(1)利用即可證明;(2)由面面垂直的性質即可證明.【詳解】證明:(1)在四棱錐中,底面是矩形,,又平面,平面;平面;(2)側面底面,側面平面,,平面,平面【點睛】本題考查了空間線面平行、垂直的證明,屬于基礎題.19、(1)an=4n-3【解析】

(1)根據(jù)條件列方程組,求出首項和公差即可得出通項公式;(2)利用裂項相消法求和.【詳解】(1)設等差數(shù)列an的公差為d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【點睛】本題考查了等差數(shù)列的通項公式,考查了利用裂項相消進行數(shù)列求和的方法,屬于基礎題.20、,【解析】

先設等差數(shù)列的公差為,根據(jù)第6項為正數(shù),從第7項起為負數(shù),得到求,再利用等差數(shù)列前項和公式求其.【詳解】設等差數(shù)列的公差為,因為第6項為正數(shù),從第7項起為負數(shù),所以,即,所以又因為所以所以【點睛】本題主要考查了等差數(shù)列的通項公式和前n項和公式,還考查了運算求解的能力,屬于中檔題.21、(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論